These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38992351)
1. Classification machine learning to detect de facto reuse and cyanobacteria at a drinking water intake. Clements E; Thompson KA; Hannoun D; Dickenson ERV Sci Total Environ; 2024 Oct; 948():174690. PubMed ID: 38992351 [TBL] [Abstract][Full Text] [Related]
2. Using machine learning classification to detect simulated increases of de facto reuse and urban stormwater surges in surface water. Thompson KA; Dickenson ERV Water Res; 2021 Oct; 204():117556. PubMed ID: 34481284 [TBL] [Abstract][Full Text] [Related]
3. Machine learning for anomaly detection in cyanobacterial fluorescence signals. Almuhtaram H; Zamyadi A; Hofmann R Water Res; 2021 Jun; 197():117073. PubMed ID: 33784609 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in algal bloom detection and prediction technology using machine learning. Park J; Patel K; Lee WH Sci Total Environ; 2024 Aug; 938():173546. PubMed ID: 38810749 [TBL] [Abstract][Full Text] [Related]
5. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. Zamyadi A; McQuaid N; Prévost M; Dorner S J Environ Monit; 2012 Feb; 14(2):579-88. PubMed ID: 22159157 [TBL] [Abstract][Full Text] [Related]
6. Application of in vivo measurements for the management of cyanobacteria breakthrough into drinking water treatment plants. Zamyadi A; Dorner S; Ndong M; Ellis D; Bolduc A; Bastien C; Prévost M Environ Sci Process Impacts; 2014 Feb; 16(2):313-23. PubMed ID: 24429778 [TBL] [Abstract][Full Text] [Related]
7. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes. Cook KV; Beyer JE; Xiao X; Hambright KD Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675 [TBL] [Abstract][Full Text] [Related]
8. Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs. Schaeffer BA; Reynolds N; Ferriby H; Salls W; Smith D; Johnston JM; Myer M J Environ Manage; 2024 Jan; 349():119518. PubMed ID: 37944321 [TBL] [Abstract][Full Text] [Related]
9. [Analysis of the Spatiotemporal Distribution of Algal Blooms and Its Driving Factors in Chaohu Lake Based on Multi-source Datasets]. Jin XL; Deng XL; Dai R; Xu QQ; Wu Y; Fan YX Huan Jing Ke Xue; 2024 May; 45(5):2694-2706. PubMed ID: 38629533 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Chaffin JD; Kane DD; Stanislawczyk K; Parker EM Environ Sci Pollut Res Int; 2018 Sep; 25(25):25175-25189. PubMed ID: 29943249 [TBL] [Abstract][Full Text] [Related]
11. Cyanotoxins and Cyanobacteria Cell Accumulations in Drinking Water Treatment Plants with a Low Risk of Bloom Formation at the Source. Almuhtaram H; Cui Y; Zamyadi A; Hofmann R Toxins (Basel); 2018 Oct; 10(11):. PubMed ID: 30373126 [TBL] [Abstract][Full Text] [Related]
12. A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms. Torbick N; Corbiere M Int J Environ Res Public Health; 2015 Sep; 12(9):11560-78. PubMed ID: 26389930 [TBL] [Abstract][Full Text] [Related]
13. Sensor-based detection of algal blooms for public health advisories and long-term monitoring. Rome M; Beighley RE; Faber T Sci Total Environ; 2021 May; 767():144984. PubMed ID: 33636761 [TBL] [Abstract][Full Text] [Related]
14. Intraseasonal variation of phycocyanin concentrations and environmental covariates in two agricultural irrigation ponds in Maryland, USA. Smith JE; Stocker MD; Wolny JL; Hill RL; Pachepsky YA Environ Monit Assess; 2020 Oct; 192(11):706. PubMed ID: 33064217 [TBL] [Abstract][Full Text] [Related]
15. Biotic control of harmful algal blooms (HABs): A brief review. Pal M; Yesankar PJ; Dwivedi A; Qureshi A J Environ Manage; 2020 Aug; 268():110687. PubMed ID: 32383649 [TBL] [Abstract][Full Text] [Related]
16. Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva. Derot J; Yajima H; Jacquet S Harmful Algae; 2020 Nov; 99():101906. PubMed ID: 33218452 [TBL] [Abstract][Full Text] [Related]
17. Are interactive effects of harmful algal blooms and copper pollution a concern for water quality management? Hochmuth JD; Asselman J; De Schamphelaere KAC Water Res; 2014 Sep; 60():41-53. PubMed ID: 24821194 [TBL] [Abstract][Full Text] [Related]
18. Improving the performance of machine learning models for early warning of harmful algal blooms using an adaptive synthetic sampling method. Kim JH; Shin JK; Lee H; Lee DH; Kang JH; Cho KH; Lee YG; Chon K; Baek SS; Park Y Water Res; 2021 Dec; 207():117821. PubMed ID: 34781184 [TBL] [Abstract][Full Text] [Related]
19. Management of toxic cyanobacteria for drinking water production of Ain Zada Dam. Saoudi A; Brient L; Boucetta S; Ouzrout R; Bormans M; Bensouilah M Environ Monit Assess; 2017 Jul; 189(7):361. PubMed ID: 28667413 [TBL] [Abstract][Full Text] [Related]
20. Discriminating bloom-forming cyanobacteria using lab-based hyperspectral imagery and machine learning: Validation with toxic species under environmental ranges. Fournier C; Quesada A; Cirés S; Saberioon M Sci Total Environ; 2024 Jul; 932():172741. PubMed ID: 38679105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]