These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38992388)

  • 1. Assessment of bioenergy plant locations using a GIS-MCDA approach based on spatio-temporal stability maps of agricultural and livestock byproducts: A case study.
    Shi Z; Marinello F; Ai P; Pezzuolo A
    Sci Total Environ; 2024 Oct; 947():174665. PubMed ID: 38992388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal dynamics of agricultural residue resources in the last 30 years in China.
    Yang Y; Zhang P; Yang X; Xu X
    Waste Manag Res; 2016 Dec; 34(12):1231-1240. PubMed ID: 27895284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appraising the availability of biomass residues in India and their bioenergy potential.
    Deep Singh A; Gajera B; Sarma AK
    Waste Manag; 2022 Oct; 152():38-47. PubMed ID: 35973326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking biogas potential: Spatial analysis, economic viability, and climate resilience in southern regions of Khyber Pakhtunkhwa, Pakistan.
    Khan AA; Khan SU; Kipperberg G; Javed T; Ali MAS; Ullah R; Luo J
    Sci Total Environ; 2024 Feb; 911():168810. PubMed ID: 38000756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogas energy generated from livestock manure in China: Current situation and future trends.
    Wang Y; Zhang Y; Li J; Lin JG; Zhang N; Cao W
    J Environ Manage; 2021 Nov; 297():113324. PubMed ID: 34298348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Temporal and Spatial Distribution, Utilization Status, and Carbon Emission Reduction Potential of Straw Resources in China].
    Yang CW; Xing F; Zhu JC; Li RH; Zhang ZQ
    Huan Jing Ke Xue; 2023 Feb; 44(2):1149-1162. PubMed ID: 36775637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.
    Einarsson R; Persson UM
    PLoS One; 2017; 12(1):e0171001. PubMed ID: 28141827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable utilization of biomass resources for decentralized energy generation and climate change mitigation: A regional case study in India.
    Vijay V; Kapoor R; Singh P; Hiloidhari M; Ghosh P
    Environ Res; 2022 Sep; 212(Pt B):113257. PubMed ID: 35398315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The global energy matrix and use of agricultural residues for bioenergy production: A review with inspiring insights that aim to contribute to deliver solutions for society and industrial sectors through suggestions for future research.
    Ribeiro GF; Junior AB
    Waste Manag Res; 2023 Aug; 41(8):1283-1304. PubMed ID: 36856060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequential environmental life cycle assessment of a farm-scale biogas plant.
    Van Stappen F; Mathot M; Decruyenaere V; Loriers A; Delcour A; Planchon V; Goffart JP; Stilmant D
    J Environ Manage; 2016 Jun; 175():20-32. PubMed ID: 27017269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.
    Villamar CA; Rivera D; Aguayo M
    Waste Manag Res; 2016 Apr; 34(4):316-26. PubMed ID: 26862147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains.
    Vadrevu K; Lasko K
    J Environ Manage; 2015 Jan; 148():10-20. PubMed ID: 24502932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agent-Based Life Cycle Assessment enables joint economic-environmental analysis of policy to support agricultural biomass for biofuels.
    López I Losada R; Rosenbaum RK; Brady MV; Wilhelmsson F; Hedlund K
    Sci Total Environ; 2024 Mar; 916():170264. PubMed ID: 38253104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical production of bioenergy from agricultural crops and residue in Iran.
    Karimi Alavijeh M; Yaghmaei S
    Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling of straw-biochar-biogas-electricity for sustainable food production pathways: Toward an integrated modeling approach.
    Chen Y; Wang L; Fu Q; Wang Y; Liu D; Li T; Li M
    Sci Total Environ; 2024 Apr; 919():170804. PubMed ID: 38350576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable bioenergy contributes to cost-effective climate change mitigation in China.
    Xu Y; Smith P; Qin Z
    iScience; 2024 Jul; 27(7):110232. PubMed ID: 39021785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy.
    Subbarao PMV; D' Silva TC; Adlak K; Kumar S; Chandra R; Vijay VK
    Environ Res; 2023 Oct; 234():116286. PubMed ID: 37263473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Untapped renewable energy potential of crop residues in Pakistan: Challenges and future directions.
    Kashif M; Awan MB; Nawaz S; Amjad M; Talib B; Farooq M; Nizami AS; Rehan M
    J Environ Manage; 2020 Feb; 256():109924. PubMed ID: 31818740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture.
    Doyeni MO; Barcauskaite K; Buneviciene K; Venslauskas K; Navickas K; Rubezius M; Baksinskaite A; Suproniene S; Tilvikiene V
    Waste Manag Res; 2023 Mar; 41(3):701-712. PubMed ID: 36129010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the emissions and air quality impacts of biomass and biogas use in California.
    Carreras-Sospedra M; Williams R; Dabdub D
    J Air Waste Manag Assoc; 2016 Feb; 66(2):134-50. PubMed ID: 26378722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.