These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38992551)
1. The rigid-flexible balanced molecular crosslinking network transition interface: An effective strategy for improving the performance of bamboo fibers/poly(butadiene succinate-co-butadiene adipate) biocomposites. Gao J; Bi Y; Su J; Zhang Y; Wang Y; Zhang S Int J Biol Macromol; 2024 Sep; 276(Pt 1):133786. PubMed ID: 38992551 [TBL] [Abstract][Full Text] [Related]
2. A strong hydrogen bond bridging interface based on tannic acid for improving the performance of high-filled bamboo fibers/poly (butylene succinate-co-butylene adipate) (PBSA)biocomposites. Gao J; Zhang Y; Bi Y; Du K; Su J; Zhang S Int J Biol Macromol; 2024 May; 267(Pt 2):131611. PubMed ID: 38641288 [TBL] [Abstract][Full Text] [Related]
3. Effect of cellulose structure and morphology on the properties of poly(butylene succinate-co-butylene adipate) biocomposites. Avolio R; Graziano V; Pereira YD; Cocca M; Gentile G; Errico ME; Ambrogi V; Avella M Carbohydr Polym; 2015 Nov; 133():408-20. PubMed ID: 26344297 [TBL] [Abstract][Full Text] [Related]
5. Innovative bamboo-plastic composites interfacial compatibility design approach: Self-assembled crosslinked structure of polydopamine with acylated chitin fibers. Zhang Y; Sun J; Bi Y; Gao J; Su J; Zhang S Int J Biol Macromol; 2024 Nov; 279(Pt 1):134803. PubMed ID: 39209592 [TBL] [Abstract][Full Text] [Related]
6. Synergistic preparation of a straw fiber/polylactic acid composite with high toughness and strength through interfacial compatibility enhancement and elastomer toughening. Ruan J; Liao C; Li P; Li X; Zuo Y Int J Biol Macromol; 2024 Aug; 275(Pt 1):133621. PubMed ID: 38960248 [TBL] [Abstract][Full Text] [Related]
7. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate]. Ojijo V; Sinha Ray S; Sadiku R ACS Appl Mater Interfaces; 2012 Dec; 4(12):6690-701. PubMed ID: 23148691 [TBL] [Abstract][Full Text] [Related]
8. In-situ construction of chitosan@tannin structure on bamboo fiber for green and convenient reinforcement of poly(3-hydroxybutyrate) biocomposite. Bi Y; Gao J; Zhang Y; Zhang Y; Du K; Su J; Zhang S Int J Biol Macromol; 2024 Oct; 278(Pt 4):134954. PubMed ID: 39187105 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride. Siyamak S; Ibrahim NA; Abdolmohammadi S; Yunus WM; Rahman MZ Molecules; 2012 Feb; 17(2):1969-91. PubMed ID: 22343368 [TBL] [Abstract][Full Text] [Related]
11. Structure-barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction. Charlon S; Marais S; Dargent E; Soulestin J; Sclavons M; Follain N Phys Chem Chem Phys; 2015 Nov; 17(44):29918-34. PubMed ID: 26489904 [TBL] [Abstract][Full Text] [Related]
12. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers. Meriç G; Ruyter IE Dent Mater; 2007 Sep; 23(9):1157-63. PubMed ID: 17118440 [TBL] [Abstract][Full Text] [Related]
13. Strengthening and Toughening of Polylactide/Sisal Fiber Biocomposites via in-situ Reaction with Epoxy-Functionalized Oligomer and Poly (butylene-adipate-terephthalate). Wu H; Hao M Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31653031 [TBL] [Abstract][Full Text] [Related]
14. Effect of fiber esterification on fundamental properties of oil palm empty fruit bunch fiber/poly(butylene adipate-co-terephthalate) biocomposites. Siyamak S; Ibrahim NA; Abdolmohammadi S; Yunus WMZW; Rahman MZA Int J Mol Sci; 2012; 13(2):1327-1346. PubMed ID: 22408394 [TBL] [Abstract][Full Text] [Related]
15. Thermo-Mechanical Performance of Polylactide Composites Reinforced with Alkali-Treated Bamboo Fibers. Wang F; Zhou S; Yang M; Chen Z; Ran S Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966436 [TBL] [Abstract][Full Text] [Related]
16. Crustacean-inspired chitin-based flexible buffer layer with a helical cross-linked network for bamboo fiber/poly(3-hydroxybutyrate) biocomposites. Zhang Y; Zhang H; Chen Z; Gao J; Bi Y; Du K; Su J; Zhang D; Zhang S Int J Biol Macromol; 2024 Feb; 259(Pt 1):129248. PubMed ID: 38191108 [TBL] [Abstract][Full Text] [Related]
18. Effect of Fiber Surface Modification on the Interfacial Adhesion and Thermo-Mechanical Performance of Unidirectional Epoxy-Based Composites Reinforced with Bamboo Fibers. Wang F; Lu M; Zhou S; Lu Z; Ran S Molecules; 2019 Jul; 24(15):. PubMed ID: 31344801 [TBL] [Abstract][Full Text] [Related]
19. Bamboo fiber strengthened poly(lactic acid) composites with enhanced interfacial compatibility through a multi-layered coating of synergistic treatment strategy. Fei B; Wang D; AlMasoud N; Yang H; Yang J; Alomar TS; Puangsin B; Xu BB; Algadi H; El-Bahy ZM; Guo Z; Shi Z Int J Biol Macromol; 2023 Sep; 249():126018. PubMed ID: 37517757 [TBL] [Abstract][Full Text] [Related]
20. Wood Residue-Derived Biochar as a Low-Cost, Lubricating Filler in Poly(butylene succinate- Cappello M; Rossi D; Filippi S; Cinelli P; Seggiani M Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]