These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38992694)
1. Dual inhibition of SUMOylation and MEK conquers MYC-expressing KRAS-mutant cancers by accumulating DNA damage. Kotani H; Oshima H; Boucher JC; Yamano T; Sakaguchi H; Sato S; Fukuda K; Nishiyama A; Yamashita K; Ohtsubo K; Takeuchi S; Nishiuchi T; Oshima M; Davila ML; Yano S J Biomed Sci; 2024 Jul; 31(1):68. PubMed ID: 38992694 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of mutant KRAS-driven overexpression of ARF6 and MYC by an eIF4A inhibitor drug improves the effects of anti-PD-1 immunotherapy for pancreatic cancer. Hashimoto A; Handa H; Hata S; Tsutaho A; Yoshida T; Hirano S; Hashimoto S; Sabe H Cell Commun Signal; 2021 May; 19(1):54. PubMed ID: 34001163 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer. Shimamura T; Chen Z; Soucheray M; Carretero J; Kikuchi E; Tchaicha JH; Gao Y; Cheng KA; Cohoon TJ; Qi J; Akbay E; Kimmelman AC; Kung AL; Bradner JE; Wong KK Clin Cancer Res; 2013 Nov; 19(22):6183-92. PubMed ID: 24045185 [TBL] [Abstract][Full Text] [Related]
4. Enhanced dependency of KRAS-mutant colorectal cancer cells on RAD51-dependent homologous recombination repair identified from genetic interactions in Saccharomyces cerevisiae. Kalimutho M; Bain AL; Mukherjee B; Nag P; Nanayakkara DM; Harten SK; Harris JL; Subramanian GN; Sinha D; Shirasawa S; Srihari S; Burma S; Khanna KK Mol Oncol; 2017 May; 11(5):470-490. PubMed ID: 28173629 [TBL] [Abstract][Full Text] [Related]
5. Vincristine Enhances the Efficacy of MEK Inhibitors in Preclinical Models of KRAS-mutant Colorectal Cancer. Ghosh S; Fan F; Powell RT; Roszik J; Park YS; Stephan C; Sebastian M; Tan L; Sorokin AV; Lorenzi PL; Kopetz S; Ellis LM; Bhattacharya R Mol Cancer Ther; 2023 Aug; 22(8):962-975. PubMed ID: 37310170 [TBL] [Abstract][Full Text] [Related]
6. KRAS-mutant non-small cell lung cancer (NSCLC) therapy based on tepotinib and omeprazole combination. Rosell R; Jantus-Lewintre E; Cao P; Cai X; Xing B; Ito M; Gomez-Vazquez JL; Marco-Jordán M; Calabuig-Fariñas S; Cardona AF; Codony-Servat J; Gonzalez J; València-Clua K; Aguilar A; Pedraz-Valdunciel C; Dantes Z; Jain A; Chandan S; Molina-Vila MA; Arrieta O; Ferrero M; Camps C; González-Cao M Cell Commun Signal; 2024 Jun; 22(1):324. PubMed ID: 38867255 [TBL] [Abstract][Full Text] [Related]
7. SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status. Daley BR; Vieira HM; Rao C; Hughes JM; Beckley ZM; Huisman DH; Chatterjee D; Sealover NE; Cox K; Askew JW; Svoboda RA; Fisher KW; Lewis RE; Kortum RL Proc Natl Acad Sci U S A; 2023 Nov; 120(47):e2313137120. PubMed ID: 37972068 [TBL] [Abstract][Full Text] [Related]
8. KRAS-dependent suppression of MYC enhances the sensitivity of cancer cells to cytotoxic agents. Ischenko I; Zhi J; Hayman MJ; Petrenko O Oncotarget; 2017 Mar; 8(11):17995-18009. PubMed ID: 28152508 [TBL] [Abstract][Full Text] [Related]
9. Trametinib sensitizes KRAS-mutant lung adenocarcinoma tumors to PD-1/PD-L1 axis blockade via Id1 downregulation. Puyalto A; Rodríguez-Remírez M; López I; Macaya I; Guruceaga E; Olmedo M; Vilalta-Lacarra A; Welch C; Sandiego S; Vicent S; Valencia K; Calvo A; Pio R; Raez LE; Rolfo C; Ajona D; Gil-Bazo I Mol Cancer; 2024 Apr; 23(1):78. PubMed ID: 38643157 [TBL] [Abstract][Full Text] [Related]
10. Assessing Therapeutic Efficacy of MEK Inhibition in a KRAS Li S; Liu S; Deng J; Akbay EA; Hai J; Ambrogio C; Zhang L; Zhou F; Jenkins RW; Adeegbe DO; Gao P; Wang X; Paweletz CP; Herter-Sprie GS; Chen T; Gutiérrez-Quiceno L; Zhang Y; Merlino AA; Quinn MM; Zeng Y; Yu X; Liu Y; Fan L; Aguirre AJ; Barbie DA; Yi X; Wong KK Clin Cancer Res; 2018 Oct; 24(19):4854-4864. PubMed ID: 29945997 [No Abstract] [Full Text] [Related]
11. Synergistic blocking of RAS downstream signaling and epigenetic pathway in Zhang X; Mao T; Xu H; Li S; Yue M; Ma J; Yao J; Wang Y; Zhang X; Ge W; Wang Y; Shentu D; Wang L Aging (Albany NY); 2022 Apr; 14(8):3597-3606. PubMed ID: 35468095 [TBL] [Abstract][Full Text] [Related]
12. An integrative pharmacogenomics analysis identifies therapeutic targets in KRAS-mutant lung cancer. Wang H; Lv Q; Xu Y; Cai Z; Zheng J; Cheng X; Dai Y; Jänne PA; Ambrogio C; Köhler J EBioMedicine; 2019 Nov; 49():106-117. PubMed ID: 31668570 [TBL] [Abstract][Full Text] [Related]
13. Oncogenic RAS promotes MYC protein stability by upregulating the expression of the inhibitor of apoptosis protein family member Survivin. Chang WH; Liu Y; Hammes EA; Bryant KL; Cerione RA; Antonyak MA J Biol Chem; 2023 Feb; 299(2):102842. PubMed ID: 36581205 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Klingbeil O; Lesche R; Gelato KA; Haendler B; Lejeune P Cell Death Dis; 2016 Sep; 7(9):e2365. PubMed ID: 27607580 [TBL] [Abstract][Full Text] [Related]
15. A role for the unfolded protein response stress sensor ERN1 in regulating the response to MEK inhibitors in KRAS mutant colon cancers. Šuštić T; van Wageningen S; Bosdriesz E; Reid RJD; Dittmar J; Lieftink C; Beijersbergen RL; Wessels LFA; Rothstein R; Bernards R Genome Med; 2018 Nov; 10(1):90. PubMed ID: 30482246 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of MEK suppresses hepatocellular carcinoma growth through independent MYC and BIM regulation. Zhou X; Zhu A; Gu X; Xie G Cell Oncol (Dordr); 2019 Jun; 42(3):369-380. PubMed ID: 30788663 [TBL] [Abstract][Full Text] [Related]
17. MEK inhibitor and anti-EGFR antibody overcome sotorasib resistance signals and enhance its antitumor effect in colorectal cancer cells. Hondo N; Kitazawa M; Koyama M; Nakamura S; Tokumaru S; Miyazaki S; Kataoka M; Seharada K; Soejima Y Cancer Lett; 2023 Jul; 567():216264. PubMed ID: 37336286 [TBL] [Abstract][Full Text] [Related]
18. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. González-Prieto R; Cuijpers SA; Kumar R; Hendriks IA; Vertegaal AC Cell Cycle; 2015; 14(12):1859-72. PubMed ID: 25895136 [TBL] [Abstract][Full Text] [Related]
19. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Ruess DA; Heynen GJ; Ciecielski KJ; Ai J; Berninger A; Kabacaoglu D; Görgülü K; Dantes Z; Wörmann SM; Diakopoulos KN; Karpathaki AF; Kowalska M; Kaya-Aksoy E; Song L; van der Laan EAZ; López-Alberca MP; Nazaré M; Reichert M; Saur D; Erkan MM; Hopt UT; Sainz B; Birchmeier W; Schmid RM; Lesina M; Algül H Nat Med; 2018 Jul; 24(7):954-960. PubMed ID: 29808009 [TBL] [Abstract][Full Text] [Related]
20. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. Ebi H; Corcoran RB; Singh A; Chen Z; Song Y; Lifshits E; Ryan DP; Meyerhardt JA; Benes C; Settleman J; Wong KK; Cantley LC; Engelman JA J Clin Invest; 2011 Nov; 121(11):4311-21. PubMed ID: 21985784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]