These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 38995548)

  • 1. SignalP: The Evolution of a Web Server.
    Nielsen H; Teufel F; Brunak S; von Heijne G
    Methods Mol Biol; 2024; 2836():331-367. PubMed ID: 38995548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Secretory Proteins with SignalP.
    Nielsen H
    Methods Mol Biol; 2017; 1611():59-73. PubMed ID: 28451972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server.
    Käll L; Krogh A; Sonnhammer EL
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W429-32. PubMed ID: 17483518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved prediction of signal peptides: SignalP 3.0.
    Bendtsen JD; Nielsen H; von Heijne G; Brunak S
    J Mol Biol; 2004 Jul; 340(4):783-95. PubMed ID: 15223320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepLoc 2.1: multi-label membrane protein type prediction using protein language models.
    Ødum MT; Teufel F; Thumuluri V; Almagro Armenteros JJ; Johansen AR; Winther O; Nielsen H
    Nucleic Acids Res; 2024 Jul; 52(W1):W215-W220. PubMed ID: 38587188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning approaches for the prediction of signal peptides and other protein sorting signals.
    Nielsen H; Brunak S; von Heijne G
    Protein Eng; 1999 Jan; 12(1):3-9. PubMed ID: 10065704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locating proteins in the cell using TargetP, SignalP and related tools.
    Emanuelsson O; Brunak S; von Heijne G; Nielsen H
    Nat Protoc; 2007; 2(4):953-71. PubMed ID: 17446895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model.
    Bagos PG; Tsirigos KD; Liakopoulos TD; Hamodrakas SJ
    J Proteome Res; 2008 Dec; 7(12):5082-93. PubMed ID: 19367716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
    Krogh A; Larsson B; von Heijne G; Sonnhammer EL
    J Mol Biol; 2001 Jan; 305(3):567-80. PubMed ID: 11152613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models.
    Thumuluri V; Almagro Armenteros JJ; Johansen AR; Nielsen H; Winther O
    Nucleic Acids Res; 2022 Jul; 50(W1):W228-W234. PubMed ID: 35489069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
    Nielsen H; Engelbrecht J; Brunak S; von Heijne G
    Int J Neural Syst; 1997; 8(5-6):581-99. PubMed ID: 10065837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined prediction of Tat and Sec signal peptides with hidden Markov models.
    Bagos PG; Nikolaou EP; Liakopoulos TD; Tsirigos KD
    Bioinformatics; 2010 Nov; 26(22):2811-7. PubMed ID: 20847219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods.
    Leversen NA; de Souza GA; Målen H; Prasad S; Jonassen I; Wiker HG
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2375-2383. PubMed ID: 19389770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal peptide prediction based on analysis of experimentally verified cleavage sites.
    Zhang Z; Henzel WJ
    Protein Sci; 2004 Oct; 13(10):2819-24. PubMed ID: 15340161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TPpred2: improving the prediction of mitochondrial targeting peptide cleavage sites by exploiting sequence motifs.
    Savojardo C; Martelli PL; Fariselli P; Casadio R
    Bioinformatics; 2014 Oct; 30(20):2973-4. PubMed ID: 24974200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of signal sequence prediction methods using a test set of signal peptides.
    Menne KM; Hermjakob H; Apweiler R
    Bioinformatics; 2000 Aug; 16(8):741-2. PubMed ID: 11099261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An HMM posterior decoder for sequence feature prediction that includes homology information.
    Käll L; Krogh A; Sonnhammer EL
    Bioinformatics; 2005 Jun; 21 Suppl 1():i251-7. PubMed ID: 15961464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and prediction of leucine-rich nuclear export signals.
    la Cour T; Kiemer L; Mølgaard A; Gupta R; Skriver K; Brunak S
    Protein Eng Des Sel; 2004 Jun; 17(6):527-36. PubMed ID: 15314210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SignalP 5.0 improves signal peptide predictions using deep neural networks.
    Almagro Armenteros JJ; Tsirigos KD; Sønderby CK; Petersen TN; Winther O; Brunak S; von Heijne G; Nielsen H
    Nat Biotechnol; 2019 Apr; 37(4):420-423. PubMed ID: 30778233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SignalP 4.0: discriminating signal peptides from transmembrane regions.
    Petersen TN; Brunak S; von Heijne G; Nielsen H
    Nat Methods; 2011 Sep; 8(10):785-6. PubMed ID: 21959131
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.