These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38995731)

  • 1. A curated rotamer library for common post-translational modifications of proteins.
    Zhang O; Naik SA; Liu ZH; Forman-Kay J; Head-Gordon T
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38995731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Curated Rotamer Library for Common Post-Translational Modifications of Proteins.
    Zhang O; Naik SA; Liu ZH; Forman-Kay J; Head-Gordon T
    ArXiv; 2024 May; ():. PubMed ID: 38764597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IDPConformerGenerator: A Flexible Software Suite for Sampling the Conformational Space of Disordered Protein States.
    Teixeira JMC; Liu ZH; Namini A; Li J; Vernon RM; Krzeminski M; Shamandy AA; Zhang O; Haghighatlari M; Yu L; Head-Gordon T; Forman-Kay JD
    J Phys Chem A; 2022 Sep; 126(35):5985-6003. PubMed ID: 36030416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications.
    Bah A; Forman-Kay JD
    J Biol Chem; 2016 Mar; 291(13):6696-705. PubMed ID: 26851279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Disordered Region Sampling (LDRS) for ensemble modeling of proteins with experimentally undetermined or low confidence prediction segments.
    Liu ZH; Teixeira JMC; Zhang O; Tsangaris TE; Li J; Gradinaru CC; Head-Gordon T; Forman-Kay JD
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38060268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating post-translational modifications and unnatural amino acids into high-throughput modeling of protein structures.
    Nagata K; Randall A; Baldi P
    Bioinformatics; 2014 Jun; 30(12):1681-9. PubMed ID: 24574112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Side Chains in the Three-Dimensional Structure of Proteins for Post-Translational Modifications.
    Petrovskiy DV; Nikolsky KS; Rudnev VR; Kulikova LI; Butkova TV; Malsagova KA; Kopylov AT; Kaysheva AL
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins.
    Uversky VN
    J Biol Chem; 2016 Mar; 291(13):6681-8. PubMed ID: 26851286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction to the Thematic Minireview Series on Intrinsically Disordered Proteins.
    Banerjee R
    J Biol Chem; 2016 Mar; 291(13):6679-80. PubMed ID: 26851284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIDEpro: a novel machine learning approach for the fast and accurate prediction of side-chain conformations.
    Nagata K; Randall A; Baldi P
    Proteins; 2012 Jan; 80(1):142-53. PubMed ID: 22072531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins.
    Naranjo Y; Pons M; Konrat R
    Mol Biosyst; 2012 Jan; 8(1):411-6. PubMed ID: 22108787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically Disordered Proteins Link Alternative Splicing and Post-translational Modifications to Complex Cell Signaling and Regulation.
    Zhou J; Zhao S; Dunker AK
    J Mol Biol; 2018 Aug; 430(16):2342-2359. PubMed ID: 29626537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue-Specific Force Field Improving the Sample of Intrinsically Disordered Proteins and Folded Proteins.
    Yang S; Liu H; Zhang Y; Lu H; Chen H
    J Chem Inf Model; 2019 Nov; 59(11):4793-4805. PubMed ID: 31613621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward the Accuracy and Speed of Protein Side-Chain Packing: A Systematic Study on Rotamer Libraries.
    Huang X; Pearce R; Zhang Y
    J Chem Inf Model; 2020 Jan; 60(1):410-420. PubMed ID: 31851497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying Protein Disorder through Measures of Excess Conformational Entropy.
    Rajasekaran N; Gopi S; Narayan A; Naganathan AN
    J Phys Chem B; 2016 May; 120(19):4341-50. PubMed ID: 27111521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information theoretic measures for quantifying sequence-ensemble relationships of intrinsically disordered proteins.
    Cohan MC; Ruff KM; Pappu RV
    Protein Eng Des Sel; 2019 Dec; 32(4):191-202. PubMed ID: 31375817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins.
    Uversky VN
    Brief Funct Genomics; 2020 Jan; 19(1):60-68. PubMed ID: 29982297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsically disordered proteins and multicellular organisms.
    Dunker AK; Bondos SE; Huang F; Oldfield CJ
    Semin Cell Dev Biol; 2015 Jan; 37():44-55. PubMed ID: 25307499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A backbone-dependent rotamer library with high (ϕ, ψ) coverage using metadynamics simulations.
    Mortensen JC; Damjanovic J; Miao J; Hui T; Lin YS
    Protein Sci; 2022 Dec; 31(12):e4491. PubMed ID: 36327064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a rotamer library for coarse-grained models in protein-folding simulations.
    Larriva M; Rey A
    J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.