These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 38995959)

  • 1. Identifying cell states in single-cell RNA-seq data at statistically maximal resolution.
    Grobecker P; Sakoparnig T; van Nimwegen E
    PLoS Comput Biol; 2024 Jul; 20(7):e1012224. PubMed ID: 38995959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving replicability in single-cell RNA-Seq cell type discovery with Dune.
    Roux de Bézieux H; Street K; Fischer S; Van den Berge K; Chance R; Risso D; Gillis J; Ngai J; Purdom E; Dudoit S
    BMC Bioinformatics; 2024 May; 25(1):198. PubMed ID: 38789920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles.
    Mallik S; Zhao Z
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31412637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.
    Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scBoolSeq: Linking scRNA-seq statistics and Boolean dynamics.
    Magaña-López G; Calzone L; Zinovyev A; Paulevé L
    PLoS Comput Biol; 2024 Jul; 20(7):e1011620. PubMed ID: 38976751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scRNA-Explorer: An End-user Online Tool for Single Cell RNA-seq Data Analysis Featuring Gene Correlation and Data Filtering.
    Baltsavia I; Oulas A; Theodosiou T; Lavigne MD; Andreakos E; Mavrothalassitis G; Iliopoulos I
    J Mol Biol; 2024 Sep; 436(17):168654. PubMed ID: 39237193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering.
    Xu Y; Li HD; Pan Y; Luo F; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):431-442. PubMed ID: 31369384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy.
    Lou Z; Wei X; Hu Y; Hu S; Wu Y; Tian Z
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39402696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering.
    Gao H; Shen W; Li R; Liu C; Wu S
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1480-1491. PubMed ID: 38776196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. nsDCC: dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis.
    Wang L; Li W; Zhou F; Yu K; Feng C; Zhao D
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of scRNA-seq data analysis method combinations.
    Xu L; Xue T; Ding W; Shen L
    Brief Funct Genomics; 2022 Nov; 21(6):433-440. PubMed ID: 36124658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XgCPred: Cell type classification using XGBoost-CNN integration and exploiting gene expression imaging in single-cell RNAseq data.
    Abu-Doleh A; Al Fahoum A
    Comput Biol Med; 2024 Oct; 181():109066. PubMed ID: 39180857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scDMAE: A Generative Denoising Model Adopted Mask Strategy for scRNA-Seq Data Recovery.
    Liu W; Pan Y; Teng Z; Xu J
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3772-3780. PubMed ID: 38568766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.
    Lei T; Chen R; Zhang S; Chen Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.