These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38996515)
1. Advancing HIC method development: Retention-time modeling and tuning selectivity with ternary mobile-phase systems. Ewonde Ewonde R; Molenaar SRA; Broeckhoven K; Eeltink S J Chromatogr A; 2024 Aug; 1730():465133. PubMed ID: 38996515 [TBL] [Abstract][Full Text] [Related]
2. Generic approach to the method development of intact protein separations using hydrophobic interaction chromatography. Tyteca E; De Vos J; Tassi M; Cook K; Liu X; Kaal E; Eeltink S J Sep Sci; 2018 Mar; 41(5):1017-1024. PubMed ID: 29178450 [TBL] [Abstract][Full Text] [Related]
3. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins. Müller E; Josic D; Schröder T; Moosmann A J Chromatogr A; 2010 Jul; 1217(28):4696-703. PubMed ID: 20570270 [TBL] [Abstract][Full Text] [Related]
4. Experimental study and modeling of the influence of mixed electrolytes on adsorption of macromolecules on a hydrophobic resin. Werner A; Hasse H J Chromatogr A; 2013 Nov; 1315():135-44. PubMed ID: 24099781 [TBL] [Abstract][Full Text] [Related]
5. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography. Hackemann E; Hasse H J Chromatogr A; 2017 Oct; 1521():73-79. PubMed ID: 28947205 [TBL] [Abstract][Full Text] [Related]
6. Influence of mixed salts on retention behavior of model proteins in cation exchange chromatography. Fuchs T; Pälchen A; Jupke A J Chromatogr A; 2023 May; 1696():463968. PubMed ID: 37054639 [TBL] [Abstract][Full Text] [Related]
7. Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography. Kensert A; Collaerts G; Efthymiadis K; Desmet G; Cabooter D J Chromatogr A; 2021 Feb; 1638():461900. PubMed ID: 33485027 [TBL] [Abstract][Full Text] [Related]
8. Retention modeling and method development in hydrophilic interaction chromatography. Tyteca E; Périat A; Rudaz S; Desmet G; Guillarme D J Chromatogr A; 2014 Apr; 1337():116-27. PubMed ID: 24613041 [TBL] [Abstract][Full Text] [Related]
9. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatoraphy, part 2: Optimization of the phase system. Cusumano A; Guillarme D; Beck A; Fekete S J Pharm Biomed Anal; 2016 Mar; 121():161-173. PubMed ID: 26808065 [TBL] [Abstract][Full Text] [Related]
10. [Effects of buffer salt types and non-counter ions of ion-pair reagents on the retention behavior of strongly ionized acid compounds in ion-pair reversed-phase liquid chromatography]. Liu X; Gao W; Liang C; Qiao J; Wang K; Lian H Se Pu; 2021 Sep; 39(9):1021-1029. PubMed ID: 34486842 [TBL] [Abstract][Full Text] [Related]
11. Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography. Gika H; Theodoridis G; Mattivi F; Vrhovsek U; Pappa-Louisi A J Sep Sci; 2012 Feb; 35(3):376-83. PubMed ID: 22228618 [TBL] [Abstract][Full Text] [Related]
12. Gradient elution behavior of proteins in hydrophobic interaction chromatography with U-shaped retention factor curves. Creasy A; Lomino J; Barker G; Khetan A; Carta G J Chromatogr A; 2018 Apr; 1547():53-61. PubMed ID: 29551240 [TBL] [Abstract][Full Text] [Related]
13. Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins. Tyteca E; De Vos J; Vankova N; Cesla P; Desmet G; Eeltink S J Sep Sci; 2016 Apr; 39(7):1249-57. PubMed ID: 26829155 [TBL] [Abstract][Full Text] [Related]
15. Possibilities of retention modeling and computer assisted method development in supercritical fluid chromatography. Tyteca E; Desfontaine V; Desmet G; Guillarme D J Chromatogr A; 2015 Feb; 1381():219-28. PubMed ID: 25601318 [TBL] [Abstract][Full Text] [Related]
16. Characterization and modeling of nonlinear hydrophobic interaction chromatographic systems. Nagrath D; Xia F; Cramer SM J Chromatogr A; 2011 Mar; 1218(9):1219-26. PubMed ID: 21255785 [TBL] [Abstract][Full Text] [Related]
17. Optimization of non-linear gradient in hydrophobic interaction chromatography for the analytical characterization of antibody-drug conjugates. Bobály B; Randazzo GM; Rudaz S; Guillarme D; Fekete S J Chromatogr A; 2017 Jan; 1481():82-91. PubMed ID: 28017562 [TBL] [Abstract][Full Text] [Related]
18. A perspective on the use of deep deterministic policy gradient reinforcement learning for retention time modeling in reversed-phase liquid chromatography. Kensert A; Desmet G; Cabooter D J Chromatogr A; 2024 Jan; 1713():464570. PubMed ID: 38101304 [TBL] [Abstract][Full Text] [Related]
19. Separation of proteins by hydrophobic interaction chromatography at low salt concentration. Kato Y; Nakamura K; Kitamura T; Moriyama H; Hasegawa M; Sasaki H J Chromatogr A; 2002 Sep; 971(1-2):143-9. PubMed ID: 12350109 [TBL] [Abstract][Full Text] [Related]
20. Characterization of enhanced-fluidity liquid hydrophilic interaction chromatography for the separation of nucleosides and nucleotides. Philibert GS; Olesik SV J Chromatogr A; 2011 Nov; 1218(45):8222-30. PubMed ID: 21974894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]