These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38996849)

  • 1. Improved organic matter biodegradation through pulsed H
    Mahieux M; Aemig Q; Richard C; Delgenès JP; Juge M; Trably E; Escudié R
    Bioresour Technol; 2024 Sep; 407():131101. PubMed ID: 38996849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial community redundance in biomethanation systems lead to faster recovery of methane production rates after starvation.
    Braga Nan L; Trably E; Santa-Catalina G; Bernet N; Delgenes JP; Escudie R
    Sci Total Environ; 2022 Jan; 804():150073. PubMed ID: 34517312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Archaeal community composition as key driver of H2 consumption rates at the start-up of the biomethanation process.
    Mahieux M; Richard C; Aemig Q; Delgenès JP; Juge M; Trably E; Escudié R
    Sci Total Environ; 2024 Jun; 931():172922. PubMed ID: 38701927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameters affecting acetate concentrations during in-situ biological hydrogen methanation.
    Agneessens LM; Ottosen LDM; Andersen M; Berg Olesen C; Feilberg A; Kofoed MVW
    Bioresour Technol; 2018 Jun; 258():33-40. PubMed ID: 29522923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wood-Ljungdahl pathway utilisation during in situ H
    de Jonge N; Poulsen JS; Vechi NT; Kofoed MVW; Nielsen JL
    Sci Total Environ; 2022 Feb; 806(Pt 3):151254. PubMed ID: 34710425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ biogas upgrading with H
    Hafuka A; Fujino S; Kimura K; Oshita K; Konakahara N; Takahashi S
    Sci Total Environ; 2022 Jul; 828():154573. PubMed ID: 35302028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of in-situ hydrogen biomethanation at mesophilic and thermophilic temperatures.
    Jiang H; Wu F; Wang Y; Feng L; Zhou H; Li Y
    Bioresour Technol; 2021 Oct; 337():125455. PubMed ID: 34320739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomethanation processes: new insights on the effect of a high H
    Braga Nan L; Trably E; Santa-Catalina G; Bernet N; Delgenès JP; Escudié R
    Biotechnol Biofuels; 2020; 13():141. PubMed ID: 32793302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced in-situ biomethanation of food waste by sequential inoculum acclimation: Energy efficiency and carbon savings analysis.
    Okoro-Shekwaga CK; Ross AB; Camargo-Valero MA
    Waste Manag; 2021 Jul; 130():12-22. PubMed ID: 34044360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ biological biogas upgrading using upflow anaerobic polyfoam bioreactor: Operational and biological aspects.
    Baransi-Karkaby K; Yanuka-Golub K; Hassanin M; Massalha N; Sabbah I
    Biotechnol Bioeng; 2024 Nov; 121(11):3471-3483. PubMed ID: 39036861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of microbial biogas enrichment.
    Aryal N; Kvist T; Ammam F; Pant D; Ottosen LDM
    Bioresour Technol; 2018 Sep; 264():359-369. PubMed ID: 29908874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.
    Atuanya EI; Aigbirior M
    Environ Monit Assess; 2002 Jul; 77(2):139-47. PubMed ID: 12180651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex-situ single-culture biomethanation operated in trickle-bed configuration: Microbial H
    Ale Enriquez F; Ahring BK
    Bioresour Technol; 2024 Nov; 411():131330. PubMed ID: 39182797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of organic loading rate during anaerobic digestion of municipal solid waste.
    Dhar H; Kumar P; Kumar S; Mukherjee S; Vaidya AN
    Bioresour Technol; 2016 Oct; 217():56-61. PubMed ID: 26733440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H
    Alfaro N; Fdz-Polanco M; Fdz-Polanco F; Díaz I
    Bioresour Technol; 2019 May; 280():1-8. PubMed ID: 30743054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading.
    Wang W; Xie L; Luo G; Zhou Q; Angelidaki I
    Bioresour Technol; 2013 Oct; 146():234-239. PubMed ID: 23941705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Low Can You Go: Methane Production of
    Chen X; Ottosen LDM; Kofoed MVW
    Front Bioeng Biotechnol; 2019; 7():34. PubMed ID: 30899758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ biogas upgrading assisted by bioaugmentation with hydrogenotrophic methanogens during mesophilic and thermophilic co-digestion.
    Palù M; Peprah M; Tsapekos P; Kougias P; Campanaro S; Angelidaki I; Treu L
    Bioresour Technol; 2022 Mar; 348():126754. PubMed ID: 35077815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External ceramic membrane contactor for in-situ H
    Ling Chan H; Xu H; Zhou Y
    Bioresour Technol; 2024 Aug; 406():130981. PubMed ID: 38879053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.