These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38996912)

  • 1. Metabolic reprogramming in septic acute kidney injury: pathogenesis and therapeutic implications.
    Liu C; Wei W; Huang Y; Fu P; Zhang L; Zhao Y
    Metabolism; 2024 Sep; 158():155974. PubMed ID: 38996912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Warburg Effect Promotes Mitochondrial Injury Regulated by Uncoupling Protein-2 in Septic Acute Kidney Injury.
    Ji R; Chen W; Wang Y; Gong F; Huang S; Zhong M; Liu Z; Chen Y; Ma L; Yang Z; Qu H; Mao E; Chen E
    Shock; 2021 May; 55(5):640-648. PubMed ID: 32496419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury.
    Li Y; Nourbakhsh N; Pham H; Tham R; Zuckerman JE; Singh P
    Am J Physiol Renal Physiol; 2020 Aug; 319(2):F229-F244. PubMed ID: 32538150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of aerobic glycolysis alleviates sepsis‑induced acute kidney injury by promoting lactate/Sirtuin 3/AMPK‑regulated autophagy.
    Tan C; Gu J; Li T; Chen H; Liu K; Liu M; Zhang H; Xiao X
    Int J Mol Med; 2021 Mar; 47(3):. PubMed ID: 33448325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sepsis-Associated Acute Kidney Injury.
    Manrique-Caballero CL; Del Rio-Pertuz G; Gomez H
    Crit Care Clin; 2021 Apr; 37(2):279-301. PubMed ID: 33752856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury.
    Li Z; Lu S; Li X
    Cell Mol Life Sci; 2021 Aug; 78(15):5731-5741. PubMed ID: 34185125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research progress of mitochondrial dysfunction in the pathogenesis of septic acute kidney injury].
    Ma L; Song H; Chen G
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Mar; 34(3):317-319. PubMed ID: 35574754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial function and disturbances in the septic kidney.
    Parikh SM; Yang Y; He L; Tang C; Zhan M; Dong Z
    Semin Nephrol; 2015 Jan; 35(1):108-19. PubMed ID: 25795504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic targeting of the mitochondrial dysfunction in septic acute kidney injury.
    Parikh SM
    Curr Opin Crit Care; 2013 Dec; 19(6):554-9. PubMed ID: 24150113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTSB promotes sepsis-induced acute kidney injury through activating mitochondrial apoptosis pathway.
    Wang Y; Xi W; Zhang X; Bi X; Liu B; Zheng X; Chi X
    Front Immunol; 2022; 13():1053754. PubMed ID: 36713420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reprogramming Metabolism to Enhance Kidney Tolerance during Sepsis: The Role of Fatty Acid Oxidation, Aerobic Glycolysis, and Epithelial De-Differentiation.
    Gómez H
    Nephron; 2023; 147(1):31-34. PubMed ID: 36349802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies.
    Zarbock A; Gomez H; Kellum JA
    Curr Opin Crit Care; 2014 Dec; 20(6):588-95. PubMed ID: 25320909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI.
    Ni Y; Hu BC; Wu GH; Shao ZQ; Zheng Y; Zhang R; Jin J; Hong J; Yang XH; Sun RH; Liu JQ; Mo SJ
    Theranostics; 2021; 11(19):9431-9451. PubMed ID: 34646379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute Kidney Injury in Sepsis.
    Pais T; Jorge S; Lopes JA
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment.
    Peerapornratana S; Manrique-Caballero CL; Gómez H; Kellum JA
    Kidney Int; 2019 Nov; 96(5):1083-1099. PubMed ID: 31443997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Septic acute kidney injury: the glomerular arterioles.
    Bellomo R; Wan L; Langenberg C; Ishikawa K; May CN
    Contrib Nephrol; 2011; 174():98-107. PubMed ID: 21921614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute kidney injury in sepsis.
    Bellomo R; Kellum JA; Ronco C; Wald R; Martensson J; Maiden M; Bagshaw SM; Glassford NJ; Lankadeva Y; Vaara ST; Schneider A
    Intensive Care Med; 2017 Jun; 43(6):816-828. PubMed ID: 28364303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in metabolic reprogramming of renal tubular epithelial cells in sepsis-associated acute kidney injury.
    Wang T; Huang Y; Zhang X; Zhang Y; Zhang X
    Front Physiol; 2024; 15():1329644. PubMed ID: 38312312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming.
    Zhu Z; Hu J; Chen Z; Feng J; Yang X; Liang W; Ding G
    Metabolism; 2022 Jun; 131():155194. PubMed ID: 35346693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pectolinarigenin alleviated septic acute kidney injury via inhibiting Jak2/Stat3 signaling and mitochondria dysfunction.
    Tan Z; Liu Q; Chen H; Zhang Z; Wang Q; Mu Y; Li Y; Hu T; Yang Y; Yan X
    Biomed Pharmacother; 2023 Mar; 159():114286. PubMed ID: 36706631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.