These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38996922)

  • 1. Full-cycle study on developing a novel structured micromixer and evaluating the nanoparticle products as mRNA delivery carriers.
    Na GS; Joo JU; Lee JY; Yun Y; Kaang BK; Yang JS; Kim K; Kim DP
    J Control Release; 2024 Jul; 373():161-171. PubMed ID: 38996922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA.
    Lin WS; Bostic WKV; Malmstadt N
    Lab Chip; 2024 Jan; 24(2):162-170. PubMed ID: 38165143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-Controllable and Monodispersed Lipid Nanoparticle Production with High mRNA Delivery Efficiency Using 3D-Printed Ring Micromixers.
    Hong J; Lee S; Park H; Ahn D; Lee JM; Choe H; Kim D; Kim JH; Chon CH
    ACS Appl Mater Interfaces; 2024 Aug; ():. PubMed ID: 39103250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional-Printed Vortex Tube Reactor for Continuous Flow Synthesis of Polyglycolic Acid Nanoparticles with High Productivity.
    Suwanpitak K; Sriamornsak P; Singh I; Sangnim T; Huanbutta K
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles.
    Rasouli MR; Tabrizian M
    Lab Chip; 2019 Oct; 19(19):3316-3325. PubMed ID: 31495858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles.
    Erfle P; Riewe J; Cai S; Bunjes H; Dietzel A
    Lab Chip; 2022 Aug; 22(16):3025-3044. PubMed ID: 35829631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process Robustness in Lipid Nanoparticle Production: A Comparison of Microfluidic and Turbulent Jet Mixing.
    O'Brien Laramy MN; Costa AP; Cebrero YM; Joseph J; Sarode A; Zang N; Kim LJ; Hofmann K; Wang S; Goyon A; Koenig SG; Hammel M; Hura GL
    Mol Pharm; 2023 Aug; 20(8):4285-4296. PubMed ID: 37462906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery.
    He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ
    Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-vortex micromixer based on the synergy of acoustics and inertia for nanoparticle synthesis.
    Lu Y; Tan W; Mu S; Zhu G
    Anal Chim Acta; 2023 Jan; 1239():340742. PubMed ID: 36628735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers.
    Ansari MA; Kim KY; Kim SM
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise control of microfluidic flow conditions is critical for harnessing the in vitro transfection capability of pDNA-loaded lipid-Eudragit nanoparticles.
    Santhanes D; Zhang H; Wilkins A; Aitken RJ; Gannon AL; Liang M
    Drug Deliv Transl Res; 2024 Feb; ():. PubMed ID: 38347432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers.
    Tomeh MA; Mansor MH; Hadianamrei R; Sun W; Zhao X
    Int J Pharm; 2022 May; 620():121762. PubMed ID: 35472511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale.
    Feng J; Markwalter CE; Tian C; Armstrong M; Prud'homme RK
    J Transl Med; 2019 Jun; 17(1):200. PubMed ID: 31200738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel 3D Tesla valve micromixer for efficient mixing and chitosan nanoparticle production.
    Guo K; Chen Y; Zhou Z; Zhu S; Ni Z; Xiang N
    Electrophoresis; 2022 Nov; 43(21-22):2184-2194. PubMed ID: 35730399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production.
    Chow SF; Sun CC; Chow AH
    Eur J Pharm Biopharm; 2014 Oct; 88(2):462-71. PubMed ID: 25016977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and evaluation of a Dean vortex-based micromixer.
    Howell PB; Mott DR; Golden JP; Ligler FS
    Lab Chip; 2004 Dec; 4(6):663-9. PubMed ID: 15570382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mixing method used to formulate lipid nanoparticles affects mRNA delivery efficacy and organ tropism.
    Strelkova Petersen DM; Chaudhary N; Arral ML; Weiss RM; Whitehead KA
    Eur J Pharm Biopharm; 2023 Nov; 192():126-135. PubMed ID: 37838143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput microfluidics-based synthesis of PEGylated liposomes for precise size control and efficient drug encapsulation.
    Akar S; Fardindoost S; Hoorfar M
    Colloids Surf B Biointerfaces; 2024 Jun; 238():113926. PubMed ID: 38677154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy.
    Jaradat E; Weaver E; Meziane A; Lamprou DA
    Int J Pharm; 2022 Nov; 628():122320. PubMed ID: 36272514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Digital Twin of the Coaxial Lamination Mixer for the Systematic Study of Mixing Performance and the Prediction of Precipitated Nanoparticle Properties.
    Cai S; Erfle P; Dietzel A
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.