These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38997103)
1. Long-term impacts of egg quiescence and Wolbachia infection on lipid profiles in Aedes aegypti: Ovarian roles in lipid synthesis during reproduction. Lau MJ; Nie S; Ross PA; Endersby-Harshman NM; Hoffmann AA J Insect Physiol; 2024 Sep; 157():104674. PubMed ID: 38997103 [TBL] [Abstract][Full Text] [Related]
2. Wolbachia inhibits ovarian formation and increases blood feeding rate in female Aedes aegypti. Lau MJ; Ross PA; Endersby-Harshman NM; Yang Q; Hoffmann AA PLoS Negl Trop Dis; 2022 Nov; 16(11):e0010913. PubMed ID: 36367854 [TBL] [Abstract][Full Text] [Related]
3. The effect of repeat feeding on dengue virus transmission potential in Wolbachia-infected Aedes aegypti following extended egg quiescence. Lau MJ; Valdez AR; Jones MJ; Aranson I; Hoffmann AA; McGraw EA PLoS Negl Trop Dis; 2024 Jul; 18(7):e0012305. PubMed ID: 38976758 [TBL] [Abstract][Full Text] [Related]
4. Infertility and fecundity loss of Wolbachia-infected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics. Lau MJ; Ross PA; Hoffmann AA PLoS Negl Trop Dis; 2021 Feb; 15(2):e0009179. PubMed ID: 33591971 [TBL] [Abstract][Full Text] [Related]
6. Guo Y; Guo J; Li Y Microbiol Spectr; 2022 Oct; 10(5):e0263321. PubMed ID: 35894613 [No Abstract] [Full Text] [Related]
7. A Wolbachia symbiont in Aedes aegypti disrupts mosquito egg development to a greater extent when mosquitoes feed on nonhuman versus human blood. McMeniman CJ; Hughes GL; O'Neill SL J Med Entomol; 2011 Jan; 48(1):76-84. PubMed ID: 21337952 [TBL] [Abstract][Full Text] [Related]
8. The influence of different sources of blood meals on the physiology of Aedes aegypti harboring Wolbachia wMel: mouse blood as an alternative for mosquito rearing. Farnesi LC; Carvalho FD; Lacerda APC; Moreira LA; Bruno RV Parasit Vectors; 2021 Jan; 14(1):21. PubMed ID: 33407798 [TBL] [Abstract][Full Text] [Related]
9. Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Caragata EP; Rancès E; O'Neill SL; McGraw EA Microb Ecol; 2014 Jan; 67(1):205-18. PubMed ID: 24337107 [TBL] [Abstract][Full Text] [Related]
10. The influence of larval competition on Brazilian Wolbachia-infected Aedes aegypti mosquitoes. Dutra HL; Lopes da Silva V; da Rocha Fernandes M; Logullo C; Maciel-de-Freitas R; Moreira LA Parasit Vectors; 2016 May; 9(1):282. PubMed ID: 27183820 [TBL] [Abstract][Full Text] [Related]
11. Wolbachia pipientis (Rickettsiales: Rickettsiaceae) mediated effects on the fitness and performance of Aedes aegypti (Diptera: Culicidae) under variable temperatures and initial larval densities. Duran-Ahumada S; Karrer L; Cheng C; Roeske I; Pilchik J; Jimenez-Vallejo D; Smith E; Roy K; Kirstein OD; Martin-Park A; Contreras-Perera Y; Che-Mendoza A; Gonzalez-Olvera G; Puerta-Guardo HN; Uribe-Soto SI; Manrique-Saide P; Vazquez-Prokopec G J Med Entomol; 2024 Sep; 61(5):1155-1167. PubMed ID: 39077840 [TBL] [Abstract][Full Text] [Related]
12. Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti. Ritchie SA; Townsend M; Paton CJ; Callahan AG; Hoffmann AA PLoS Negl Trop Dis; 2015; 9(7):e0003930. PubMed ID: 26204449 [TBL] [Abstract][Full Text] [Related]
13. Cross-tissue and generation predictability of relative Wolbachia densities in the mosquito Aedes aegypti. Mejia AJ; Dutra HLC; Jones MJ; Perera R; McGraw EA Parasit Vectors; 2022 Apr; 15(1):128. PubMed ID: 35413938 [TBL] [Abstract][Full Text] [Related]
14. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Kittayapong P; Kaeothaisong NO; Ninphanomchai S; Limohpasmanee W Parasit Vectors; 2018 Dec; 11(Suppl 2):657. PubMed ID: 30583749 [TBL] [Abstract][Full Text] [Related]
15. A Ross PA; Gu X; Robinson KL; Yang Q; Cottingham E; Zhang Y; Yeap HL; Xu X; Endersby-Harshman NM; Hoffmann AA Appl Environ Microbiol; 2021 Sep; 87(20):e0126421. PubMed ID: 34379518 [No Abstract] [Full Text] [Related]
16. Studies on the fitness characteristics of Sadanandane C; Gunasekaran K; Panneer D; Subbarao SK; Rahi M; Vijayakumar B; Athithan V; Sakthivel A; Dinesh S; Jambulingam P Front Microbiol; 2022; 13():947857. PubMed ID: 35992676 [No Abstract] [Full Text] [Related]
18. Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. Flores HA; Taneja de Bruyne J; O'Donnell TB; Tuyet Nhu V; Thi Giang N; Thi Xuan Trang H; Thi Thuy Van H; Thi Long V; Thi Dui L; Le Anh Huy H; Thi Le Duyen H; Thi Van Thuy N; Thanh Phong N; Van Vinh Chau N; Thi Hue Kien D; Thuy Vi T; Wills B; O'Neill SL; Simmons CP; Carrington LB PLoS Pathog; 2020 Apr; 16(4):e1008433. PubMed ID: 32282862 [TBL] [Abstract][Full Text] [Related]
19. Establishment of Wolbachia infection in Aedes aegypti from Pakistan via embryonic microinjection and semi-field evaluation of general fitness of resultant mosquito population. Sarwar MS; Jahan N; Ali A; Yousaf HK; Munzoor I Parasit Vectors; 2022 Jun; 15(1):191. PubMed ID: 35668540 [TBL] [Abstract][Full Text] [Related]
20. Evidence for the natural occurrence of Wolbachia in Aedes aegypti mosquitoes. Balaji S; Jayachandran S; Prabagaran SR FEMS Microbiol Lett; 2019 Mar; 366(6):. PubMed ID: 30869785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]