These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38997427)

  • 1. AgCNER, the First Large-Scale Chinese Named Entity Recognition Dataset for Agricultural Diseases and Pests.
    Yao X; Hao X; Liu R; Li L; Guo X
    Sci Data; 2024 Jul; 11(1):769. PubMed ID: 38997427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
    Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic knowledge extraction from Chinese electronic medical records and rheumatoid arthritis knowledge graph construction.
    Liu F; Liu M; Li M; Xin Y; Gao D; Wu J; Zhu J
    Quant Imaging Med Surg; 2023 Jun; 13(6):3873-3890. PubMed ID: 37284084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on named entity recognition of adverse drug reactions based on NLP and deep learning.
    Wei J; Hu T; Dai J; Wang Z; Han P; Huang W
    Front Pharmacol; 2023; 14():1121796. PubMed ID: 37332351
    [No Abstract]   [Full Text] [Related]  

  • 5. Research on named entity recognition of Traditional Chinese Medicine chest discomfort cases incorporating domain vocabulary features.
    Liu Q; Zhang L; Ren G; Zou B
    Comput Biol Med; 2023 Nov; 166():107466. PubMed ID: 37742417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adversarial active learning for the identification of medical concepts and annotation inconsistency.
    Yu G; Yang Y; Wang X; Zhen H; He G; Li Z; Zhao Y; Shu Q; Shu L
    J Biomed Inform; 2020 Aug; 108():103481. PubMed ID: 32687985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An imConvNet-based deep learning model for Chinese medical named entity recognition.
    Zheng Y; Han Z; Cai Y; Duan X; Sun J; Yang W; Huang H
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):303. PubMed ID: 36411432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lexicon and attention-based named entity recognition for kiwifruit diseases and pests: A Deep learning approach.
    Zhang L; Nie X; Zhang M; Gu M; Geissen V; Ritsema CJ; Niu D; Zhang H
    Front Plant Sci; 2022; 13():1053449. PubMed ID: 36466267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information.
    Dang TH; Le HQ; Nguyen TM; Vu ST
    Bioinformatics; 2018 Oct; 34(20):3539-3546. PubMed ID: 29718118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)-Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study.
    Li F; Jin Y; Liu W; Rawat BPS; Cai P; Yu H
    JMIR Med Inform; 2019 Sep; 7(3):e14830. PubMed ID: 31516126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A BERT-Span model for Chinese named entity recognition in rehabilitation medicine.
    Zhong J; Xuan Z; Wang K; Cheng Z
    PeerJ Comput Sci; 2023; 9():e1535. PubMed ID: 37705622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT.
    Chen P; Zhang M; Yu X; Li S
    BMC Med Inform Decis Mak; 2022 Dec; 22(1):315. PubMed ID: 36457119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training.
    Chen Y; Zhou C; Li T; Wu H; Zhao X; Ye K; Liao J
    J Biomed Inform; 2019 Aug; 96():103252. PubMed ID: 31323311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records.
    Li L; Zhao J; Hou L; Zhai Y; Shi J; Cui F
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):235. PubMed ID: 31801540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-layer soft lattice based model for Chinese clinical named entity recognition.
    Guo S; Yang W; Han L; Song X; Wang G
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):201. PubMed ID: 35908055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocabulary Matters: An Annotation Pipeline and Four Deep Learning Algorithms for Enzyme Named Entity Recognition.
    Wang M; Vijayaraghavan A; Beck T; Posma JM
    J Proteome Res; 2024 Jun; 23(6):1915-1925. PubMed ID: 38733346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods.
    Zhang Y; Wang X; Hou Z; Li J
    JMIR Med Inform; 2018 Dec; 6(4):e50. PubMed ID: 30559093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample Size Considerations for Fine-Tuning Large Language Models for Named Entity Recognition Tasks: Methodological Study.
    Majdik ZP; Graham SS; Shiva Edward JC; Rodriguez SN; Karnes MS; Jensen JT; Barbour JB; Rousseau JF
    JMIR AI; 2024 May; 3():e52095. PubMed ID: 38875593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.