These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38997527)

  • 1. Production of a bacterial secretome highly efficient for the deconstruction of xylans.
    Topalian J; Navas L; Ontañon O; Valacco MP; Noseda DG; Blasco M; Peña MJ; Urbanowicz BR; Campos E
    World J Microbiol Biotechnol; 2024 Jul; 40(9):266. PubMed ID: 38997527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Multifunctional Arabinofuranosidase/Endoxylanase/β-Xylosidase GH43 Enzyme from Paenibacillus curdlanolyticus B-6 and Its Synergistic Action To Produce Arabinose and Xylose from Cereal Arabinoxylan.
    Limsakul P; Phitsuwan P; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Ratanakhanokchai K
    Appl Environ Microbiol; 2021 Nov; 87(24):e0173021. PubMed ID: 34613758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass.
    Ghio S; Insani EM; Piccinni FE; Talia PM; Grasso DH; Campos E
    Microbiol Res; 2016; 186-187():16-26. PubMed ID: 27242139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2.
    Huang D; Liu J; Qi Y; Yang K; Xu Y; Feng L
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6023-6037. PubMed ID: 28616644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct actions by Paenibacillus sp. strain E18 α-L-arabinofuranosidases and xylanase in xylan degradation.
    Shi P; Chen X; Meng K; Huang H; Bai Y; Luo H; Yang P; Yao B
    Appl Environ Microbiol; 2013 Mar; 79(6):1990-5. PubMed ID: 23335774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-level production of xylose from agricultural wastes using GH11 endo-xylanase and GH43 β-xylosidase from Bacillus sp.
    Wang F; Yao Z; Zhang X; Han Z; Chu X; Ge X; Lu F; Liu Y
    Bioprocess Biosyst Eng; 2022 Oct; 45(10):1705-1717. PubMed ID: 36063213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions and characteristics of two bifunctional GH43 β-xylosidase /α-L-arabinofuranosidases with different structures on the xylan degradation of Paenibacillus physcomitrellae strain XB.
    Zhang XJ; Wang L; Wang S; Chen ZL; Li YH
    Microbiol Res; 2021 Dec; 253():126886. PubMed ID: 34687975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and kinetic characterization of GH43 β-D-xylosidase/α-L-arabinofuranosidase and GH30 α-L-arabinofuranosidase/β-D -xylosidase from rumen metagenome.
    Zhou J; Bao L; Chang L; Zhou Y; Lu H
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):143-52. PubMed ID: 21720773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications.
    Goldbeck R; Damásio AR; Gonçalves TA; Machado CB; Paixão DA; Wolf LD; Mandelli F; Rocha GJ; Ruller R; Squina FM
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8513-25. PubMed ID: 25077777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth.
    Rakotoarivonina H; Hermant B; Monthe N; Rémond C
    Microb Cell Fact; 2012 Dec; 11():159. PubMed ID: 23241174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the xylan degradation system of Cellulomonas sp. B6: biochemical characterization of rCsXyn10A and rCsAbf62A.
    Garrido MM; Piccinni FE; Landoni M; Peña MJ; Topalian J; Couto A; Wirth SA; Urbanowicz BR; Campos E
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5035-5049. PubMed ID: 35799069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycosidic bond rearrangements in isomeric xylobioses by yeast xylan-degrading enzymes.
    Biely P; Petráková E
    FEBS Lett; 1984 Dec; 178(2):323-6. PubMed ID: 6439578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan.
    Tuncer M; Ball AS
    J Appl Microbiol; 2003; 94(6):1030-5. PubMed ID: 12752811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of an oligosaccharide reducing-end xylanase, BhRex8A, on the synergistic degradation of xylan backbones by an optimised xylanolytic enzyme cocktail.
    Malgas S; Pletschke BI
    Enzyme Microb Technol; 2019 Mar; 122():74-81. PubMed ID: 30638511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan.
    Yang X; Shi P; Huang H; Luo H; Wang Y; Zhang W; Yao B
    Food Chem; 2014 Apr; 148():381-7. PubMed ID: 24262572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant "minimal" enzyme cocktail containing beta-xylosidase and novel endo-1,4-beta-xylanase and alpha-l-arabinofuranosidase activities.
    Sørensen HR; Pedersen S; Jørgensen CT; Meyer AS
    Biotechnol Prog; 2007; 23(1):100-7. PubMed ID: 17269676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Glycoside Hydrolase Family 8 Reducing-End Xylose-Releasing Exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 Is Active on Branched Xylooligosaccharides.
    Valenzuela SV; Lopez S; Biely P; Sanz-Aparicio J; Pastor FI
    Appl Environ Microbiol; 2016 Sep; 82(17):5116-24. PubMed ID: 27316951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan.
    Imjongjairak S; Jommuengbout P; Karpilanondh P; Katsuzaki H; Sakka M; Kimura T; Pason P; Tachaapaikoon C; Romsaiyud J; Ratanakhanokchai K; Sakka K
    Enzyme Microb Technol; 2015 May; 72():1-9. PubMed ID: 25837501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes.
    Fukuda M; Watanabe S; Yoshida S; Itoh H; Itoh Y; Kamio Y; Kaneko J
    J Bacteriol; 2010 Apr; 192(8):2210-9. PubMed ID: 20154127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.