These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38998144)

  • 1. Experimental Study of Auxetic Structures Made of Re-Entrant ("Bow-Tie") Cells.
    Plewa J; Płońska M; Feliksik K; Junak G
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study.
    Ghavidelnia N; Bodaghi M; Hedayati R
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-Entrant Honeycomb Auxetic Structure with Enhanced Directional Properties.
    Mustahsan F; Khan SZ; Zaidi AA; Alahmadi YH; Mahmoud ERI; Almohamadi H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Orthotropic Behavior in an Auxetic Structure Based on a Novel Design Parameter of a Square Cell with Re-Entrant Struts.
    Valle R; Pincheira G; Tuninetti V; Garrido C; Treviño C; Morales J
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of Auxetic Structures Assembled from Rotating Rectangles.
    Plewa J; Płońska M; Junak G
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38592007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composites with Re-Entrant Lattice: Effect of Filler on Auxetic Behaviour.
    Tashkinov M; Tarasova A; Vindokurov I; Silberschmidt VV
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Plane Compressive Responses of Non-Homogenous Re-Entrant Honeycombs Fabricated by Fused Deposition Modelling.
    Baroutaji A; Nikkhah H; Arjunan A; Pirmohammad S; Robinson J
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical relationships for 2D Re-entrant auxetic metamaterials: An application to 3D printing flexible implants.
    Hedayati R; Yousefi A; Dezaki ML; Bodaghi M
    J Mech Behav Biomed Mater; 2023 Jul; 143():105938. PubMed ID: 37263172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Enhanced Three-Dimensional Auxetic Lattice Structure with Improved Property.
    Xue Y; Gao P; Zhou L; Han F
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation and Tailoring of Rotating Squares' and Rectangles' Auxetic Structure Behavior through Computational Simulations of 6082T6 Aluminum Alloy Structures.
    Elsamanty M; Elshokrofy H; Ibrahim A; Järvenpää A; Khedr M
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Plane Mechanical Behavior of a New Star-Re-Entrant Hierarchical Metamaterial.
    Zhang W; Zhao S; Sun R; Scarpa F; Wang J
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength enhancement and modulus modulation in auxetic meta-biomaterials produced by selective laser melting.
    Chen D; Li D; Pan K; Gao S; Wang B; Sun M; Zhao C; Liu X; Li N
    Acta Biomater; 2022 Nov; 153():596-613. PubMed ID: 36162764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting nonlinearities through geometric engineering to enhance the auxetic behaviour in re-entrant honeycomb metamaterials.
    Srivastava C; Bhola L; Mahesh V; Guruprasad PJ; Petrinic N; Scarpa F; Harursampath D; Ponnusami SA
    Sci Rep; 2023 Nov; 13(1):20915. PubMed ID: 38016976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxetic B
    Wang B; Wu Q; Zhang Y; Ma L; Wang J
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33231-33237. PubMed ID: 31436953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs.
    Zhang X; Yang D
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely Non-Auxetic Behavior of a Typical Auxetic Microstructure Due to Its Material Properties.
    Bilski M; Wojciechowski KW; Stręk T; Kędziora P; Grima-Cornish JN; Dudek MR
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, molecular dynamics simulation, and investigation of the mechanical behavior of DNA origami nanotubes with auxetic and honeycomb structures.
    Mogheiseh M; Etemadi E; Hasanzadeh Ghasemi R
    J Biomol Struct Dyn; 2023; 41(24):14822-14831. PubMed ID: 36889931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue performance of auxetic meta-biomaterials.
    Kolken HMA; Garcia AF; Du Plessis A; Rans C; Mirzaali MJ; Zadpoor AA
    Acta Biomater; 2021 May; 126():511-523. PubMed ID: 33711528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative Poisson's ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides.
    Yu L; Yan Q; Ruzsinszky A
    Nat Commun; 2017 May; 8():15224. PubMed ID: 28541270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bending analysis of sandwich panel composite with a re-entrant lattice core using zig-zag theory.
    Khoshgoftar MJ; Barkhordari A; Limuti M; Buccino F; Vergani L; Mirzaali MJ
    Sci Rep; 2022 Sep; 12(1):15796. PubMed ID: 36138038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.