These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38998349)

  • 1. Optimization Design and Performance Study of Wearable Thermoelectric Device Using Phase Change Material as Heat Sink.
    Xin J; Xu G; Guo T; Nan B
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Liquid Metal-Enhanced Wearable Thermoelectric Generator.
    Liu W; Li Z; Yang Y; Hu C; Wang Z; Lu Y
    Bioengineering (Basel); 2022 Jun; 9(6):. PubMed ID: 35735497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive Radiative Cooling Enables Improved Performance in Wearable Thermoelectric Generators.
    Liu Y; Hou S; Wang X; Yin L; Wu Z; Wang X; Mao J; Sui J; Liu X; Zhang Q; Liu Z; Cao F
    Small; 2022 Mar; 18(10):e2106875. PubMed ID: 34984821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives.
    Tabaie Z; Omidvar A
    Heliyon; 2023 Apr; 9(4):e14707. PubMed ID: 37025803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Lasting Heat Dissipation of Flexible Heat Sinks for Wearable Thermoelectric Devices.
    Ding Q; Sun X; Zhu Z; Yan S; Xia Z; Hou Y; Wang Z
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31228-31236. PubMed ID: 38849743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications.
    Nozariasbmarz A; Krasinski JS; Vashaee D
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation.
    Zhu S; Peng Y; Gao J; Miao L; Lai H; Liu C; Zhang J; Zhang Y; Zhou S; Koumoto K; Zhu T
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1045-1055. PubMed ID: 34965726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operation of Wearable Thermoelectric Generators Using Dual Sources of Heat and Light.
    Jeong MH; Kim KC; Kim JS; Choi KJ
    Adv Sci (Weinh); 2022 Apr; 9(12):e2104915. PubMed ID: 35199951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Waste Heat Conversion: Integrating Phase-Change Material Heatsinks and Wind Speed Dynamics to Enhance Flexible Thermoelectric Generator Efficiency.
    Egypt P; Sakdanuphab R; Sakulkalavek A; Klongratog B; Somdock N
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Study of the Thermoelectric Work Units Encapsulated with Cement Paste for Building Energy Harvesting.
    Lai Z; Hao Y; Wei Y; She A; Yao W
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Thermoelectric Fabric Structure with Switched Thermal Gradient Direction toward Wearable In-Plane Thermoelectric Generators.
    Ding D; Wu Q; Li Q; Chen Y; Zhi C; Wei X; Wang J
    Small; 2024 May; 20(22):e2306830. PubMed ID: 38126556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective evaluation of wearable thermoelectric generator: From platform building to performance verification.
    Xu Z; Yang D; Yuan X; Hua S; You H; Xing Y; Hu K; Wang J; Xiao Y; Yan Y; Tang X
    Rev Sci Instrum; 2022 Apr; 93(4):045105. PubMed ID: 35489943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Performance of Heat Sink Filled with Double-Porosity Porous Aluminum Skeleton/Paraffin Phase Change Material.
    Huang S; Long C; Hu Z; Xu Y; Zhang B; Zhi C
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cross-Plane Design for Wearable Thermoelectric Generators with High Stretchability and Output Performance.
    Yang J; Pu Y; Yu H; Ye DD; Liu X; Xin JH
    Small; 2023 Nov; 19(45):e2304529. PubMed ID: 37434332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Power-Density Wearable Thermoelectric Generators for Human Body Heat Harvesting.
    Fan W; Shen Z; Zhang Q; Liu F; Fu C; Zhu T; Zhao X
    ACS Appl Mater Interfaces; 2022 May; 14(18):21224-21231. PubMed ID: 35482595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable-produced 3D elastic thermoelectric network for body heat harvesting.
    Liu Y; Wang X; Hou S; Wu Z; Wang J; Mao J; Zhang Q; Liu Z; Cao F
    Nat Commun; 2023 May; 14(1):3058. PubMed ID: 37244924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance W-Doped Bi
    Liu Z; Zhang Y; Xue FN; Liu T; Ding X; Lu Y; Zhang JC; Xu FJ
    ACS Appl Mater Interfaces; 2024 May; 16(20):26025-26033. PubMed ID: 38717862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influences of the Thomson Effect on the Performance of a Thermoelectric Generator-Driven Thermoelectric Heat Pump Combined Device.
    Feng Y; Chen L; Meng F; Sun F
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high performance wearable thermoelectric coolers with less materials.
    Kishore RA; Nozariasbmarz A; Poudel B; Sanghadasa M; Priya S
    Nat Commun; 2019 Apr; 10(1):1765. PubMed ID: 30992438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Thermoelectric Energy Harvesting with Graphene Aerogel-Supported Form-Stable Phase Change Materials.
    Yu C; Song YS
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.