These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38998384)

  • 1. USAF Characteristic
    Tiwari K; Alankar A; Singh Raman RK; Jones R
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of Requirements for the Durability and Damage Tolerance Certification of Additively Manufactured Aircraft Structural Parts and AM Repairs.
    Kundu S; Jones R; Peng D; Matthews N; Alankar A; Raman SRK; Huang P
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further Studies into Crack Growth in Additively Manufactured Materials.
    Iliopoulos AP; Jones R; Michopoulos JG; Phan N; Rans C
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durability Analysis of Cold Spray Repairs: Phase I-Effect of Surface Grit Blasting.
    Peng D; Tang C; Watts J; Ang A; Raman RKS; Nicholas M; Phan N; Jones R
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy-Polymer Composites.
    Michel S; Murphy N; Kinloch AJ; Jones R
    Polymers (Basel); 2024 Feb; 16(3):. PubMed ID: 38337324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling Fatigue Crack Growth in High-Density Polyethylene and Acrylonitrile Butadiene Styrene Polymers.
    Jones R; Kinloch AJ; Ang ASM
    Polymers (Basel); 2024 May; 16(9):. PubMed ID: 38732768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the Variability and the Anisotropic Behaviour of Crack Growth in SLM Ti-6Al-4V.
    Jones R; Rans C; Iliopoulos AP; Michopoulos JG; Phan N; Peng D
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33805756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue crack growth in epoxy polymer nanocomposites.
    Kinloch AJ; Jones R; Michopoulos JG
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200436. PubMed ID: 34148424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Underload Cycles on Oxide-Induced Crack Closure Development in Cr-Mo Low-Alloy Steel.
    Pokorný P; Vojtek T; Jambor M; Náhlík L; Hutař P
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34068046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirements and Variability Affecting the Durability of Bonded Joints.
    Jones R; Peng D; Michopoulos JG; Kinloch AJ
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32210207
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual Fatigue Crack Growth Behavior of Long Cracks at Low Stress Intensity Factor Ranges.
    Kujawski D; Vasudevan AK
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FCG Modelling Considering the Combined Effects of Cyclic Plastic Deformation and Growth of Micro-Voids.
    Sérgio ER; Antunes FV; Borges MF; Neto DM
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Determination of Fatigue Crack Propagation Thresholds from Crack Growth Data.
    Schönherr JA; Duarte L; Madia M; Zerbst U; Geilen MB; Klein M; Oechsner M
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy.
    Masuda K; Ishihara S; Oguma N
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigative Method for Fatigue Crack Propagation Based on a Small Time Scale.
    Wang H; Zhang W; Zhang J; Dai W; Zhao Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue Characteristics of 7050-T7451 Aluminum Alloy Friction Stir Welding Joints and the Stress Ratio Effect.
    Zhu H; Lacidogna G; Deng C; Gong B; Liu F
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of TiB Orientation on Near-Threshold Fatigue Crack Propagation in TiB-Reinforced Ti-3Al-2.5V Matrix Composites Treated with Heat Extrusion.
    Kikuchi S; Tamai S; Kawai T; Nakai Y; Kurita H; Gourdet S
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.