These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38998419)
1. Performance Evaluation of Thermal Insulation Materials from Sheep's Wool and Hemp Fibres. Vėjelis S; Vaitkus S; Skulskis V; Kremensas A; Kairytė A Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998419 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Sheep Wool-Based Composites for Building Insulation. Dénes TO; Iştoan R; Tǎmaş-Gavrea DR; Manea DL; Hegyi A; Popa F; Vasile O Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631991 [TBL] [Abstract][Full Text] [Related]
3. Mechanical, physical and thermal properties of composite materials produced with the basidiomycete Fomes fomentarius. Schmidt B; Freidank-Pohl C; Zillessen J; Stelzer L; Guitar TN; Lühr C; Müller H; Zhang F; Hammel JU; Briesen H; Jung S; Gusovius HJ; Meyer V Fungal Biol Biotechnol; 2023 Dec; 10(1):22. PubMed ID: 38049892 [TBL] [Abstract][Full Text] [Related]
4. Effect of Blend Composition on Barrier Properties of Insulating Mats Produced from Local Wool and Waste Bast Fibres. Kicińska-Jakubowska A; Broda J; Zimniewska M; Bączek M; Mańkowski J Materials (Basel); 2023 Jan; 16(1):. PubMed ID: 36614798 [TBL] [Abstract][Full Text] [Related]
5. Experimental Analysis of Moisture-Dependent Thermal Conductivity, and Hygric Properties of Novel Hemp-shive Insulations with Numerical Assessment of Their In-Built Hygrothermal and Energy Performance. Latif E Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276425 [TBL] [Abstract][Full Text] [Related]
6. Effects of Water and Chemical Solutions Ageing on the Physical, Mechanical, Thermal and Flammability Properties of Natural Fibre-Reinforced Thermoplastic Composites. Kandola BK; Mistik SI; Pornwannachai W; Horrocks AR Molecules; 2021 Jul; 26(15):. PubMed ID: 34361733 [TBL] [Abstract][Full Text] [Related]
7. Thermal Insulation Mattresses Based on Textile Waste and Recycled Plastic Waste Fibres, Integrating Natural Fibres of Vegetable or Animal Origin. Hegyi A; Vermeșan H; Lăzărescu AV; Petcu C; Bulacu C Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207888 [TBL] [Abstract][Full Text] [Related]
8. A Comparative Thermoacoustic Insulation Study of Silica Aerogels Reinforced with Reclaimed Textile Fibres: Cotton, Polyester and Wool. Linhares T; Carneiro VH; Pessoa de Amorim MT; Durães L Gels; 2023 Jul; 9(7):. PubMed ID: 37504426 [TBL] [Abstract][Full Text] [Related]
9. Research on Thermal Insulation Performance and Impact on Indoor Air Quality of Cellulose-Based Thermal Insulation Materials. Petcu C; Hegyi A; Stoian V; Dragomir CS; Ciobanu AA; Lăzărescu AV; Florean C Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570162 [TBL] [Abstract][Full Text] [Related]
10. Risk assessment of boron in glass wool insulation. Jensen AA Environ Sci Pollut Res Int; 2009 Jan; 16(1):73-8. PubMed ID: 18998186 [TBL] [Abstract][Full Text] [Related]
11. Development of High Strength Particleboards from Hemp Shives and Corn Starch. Rimkienė A; Vėjelis S; Kremensas A; Vaitkus S; Kairytė A Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512277 [TBL] [Abstract][Full Text] [Related]
12. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. Elsacker E; Vandelook S; Brancart J; Peeters E; De Laet L PLoS One; 2019; 14(7):e0213954. PubMed ID: 31329589 [TBL] [Abstract][Full Text] [Related]
13. Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden. Ranefjärd O; Strandberg-de Bruijn PB; Wadsö L Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730828 [TBL] [Abstract][Full Text] [Related]
14. Upcycling of industrial footwear waste into nonwoven fibrous structures with thermal and acoustic insulation properties. Alves DI; Carvalho Ó; Fernandes NA; Cosentino LT; Paula Junior AC; Fangueiro R; Ferreira DP J Environ Manage; 2024 Jul; 363():121363. PubMed ID: 38850911 [TBL] [Abstract][Full Text] [Related]
15. Binderless Thermal Insulation Panels Made of Spruce Bark Fibres. Gößwald J; Barbu MC; Petutschnigg A; Tudor EM Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34072429 [TBL] [Abstract][Full Text] [Related]
16. Thermal Insulation and Mechanical Properties of Polylactic Acid (PLA) at Different Processing Conditions. Barkhad MS; Abu-Jdayil B; Mourad AHI; Iqbal MZ Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32938000 [TBL] [Abstract][Full Text] [Related]
17. Influence of Anatomy, Microstructure, and Composition of Natural Fibers on the Performance of Thermal Insulation Panels. Ayadi M; Segovia C; Baffoun A; Zouari R; Fierro V; Celzard A; Msahli S; Brosse N ACS Omega; 2023 Dec; 8(51):48673-48688. PubMed ID: 38162742 [TBL] [Abstract][Full Text] [Related]
18. Sustainable Lightweight Insulation Materials from Textile-Based Waste for the Automobile Industry. Cai Z; Al Faruque MA; Kiziltas A; Mielewski D; Naebe M Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33807970 [TBL] [Abstract][Full Text] [Related]
19. Thermal insulation materials in architecture: a comparative test study with aerogel and rock wool. Danaci HM; Akin N Environ Sci Pollut Res Int; 2022 Oct; 29(48):72979-72990. PubMed ID: 35619004 [TBL] [Abstract][Full Text] [Related]
20. [Chemical and physical characteristics and toxicology of man-made mineral fibers]. Foà V; Basilico S Med Lav; 1999; 90(1):10-52. PubMed ID: 10339953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]