These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38998697)
1. Exploring Zinc-Doped Manganese Hexacyanoferrate as Cathode for Aqueous Zinc-Ion Batteries. Beitia J; Ahedo I; Paredes JI; Goikolea E; Ruiz de Larramendi I Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998697 [TBL] [Abstract][Full Text] [Related]
2. High-Voltage and Stable Manganese Hexacyanoferrate/Zinc Batteries Using Gel Electrolytes. Luo L; Liu Y; Shen Z; Wen Z; Chen S; Hong G ACS Appl Mater Interfaces; 2023 Jun; 15(24):29032-29041. PubMed ID: 37289989 [TBL] [Abstract][Full Text] [Related]
3. Acid-assisted synthesis of core-shell Prussian blue cathode for sodium-ion batteries. Wang K; Yang M; Liu Q; Cao S; Wang Y; Hu T; Peng Z J Colloid Interface Sci; 2025 Jan; 678(Pt C):346-358. PubMed ID: 39298987 [TBL] [Abstract][Full Text] [Related]
4. Co-Solvent Electrolyte Design to Inhibit Phase Transition toward High Performance K Chen W; Wu J; Fu K; Deng Z; Chen X; Cai H; Wu X; Xing B; Luo W; Mai L Small Methods; 2024 Jun; 8(6):e2300617. PubMed ID: 37423947 [TBL] [Abstract][Full Text] [Related]
5. Cubic Manganese Potassium Hexacyanoferrate Regulated by Controlling of the Water and Defects as a High-Capacity and Stable Cathode Material for Rechargeable Aqueous Zinc-Ion Batteries. Cao T; Zhang F; Chen M; Shao T; Li Z; Xu Q; Cheng D; Liu H; Xia Y ACS Appl Mater Interfaces; 2021 Jun; 13(23):26924-26935. PubMed ID: 34060801 [TBL] [Abstract][Full Text] [Related]
6. Vanadium Hexacyanoferrate as a High-Capacity and High-Voltage Cathode for Aqueous Rechargeable Zinc Ion Batteries. Zhang S; Pang Q; Ai Y; He W; Fu Y; Xing M; Tian Y; Luo X Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500891 [TBL] [Abstract][Full Text] [Related]
7. Influence of Vacancies in Manganese Hexacyanoferrate Cathode for Organic Na-Ion Batteries: A Structural Perspective. Li M; Gaboardi M; Mullaliu A; Maisuradze M; Xue X; Aquilanti G; Rikkert Plaisier J; Passerini S; Giorgetti M ChemSusChem; 2023 Jun; 16(12):e202300201. PubMed ID: 36852937 [TBL] [Abstract][Full Text] [Related]
8. Structural Evolution of Manganese Prussian Blue Analogue in Aqueous ZnSO Li M; Maisuradze M; Mullaliu A; Carlomagno I; Aquilanti G; Plaisier JR; Giorgetti M Small; 2024 Dec; 20(51):e2404584. PubMed ID: 39105446 [TBL] [Abstract][Full Text] [Related]
9. Boosting the Cyclic Stability of Aqueous Zinc-Ion Battery Based on Al-Doped V Qian Li ; Wei T; Ma K; Yang G; Wang C ACS Appl Mater Interfaces; 2019 Jun; 11(23):20888-20894. PubMed ID: 31117461 [TBL] [Abstract][Full Text] [Related]
10. Seed-Assisted Reversible Dissolution/Deposition of MnO Qi Y; Li F; Sheng H; Zhang H; Yuan J; Ma L; Bi H; Ma Y; Li W; Lan W Small; 2024 Nov; 20(48):e2404312. PubMed ID: 39194488 [TBL] [Abstract][Full Text] [Related]
11. Doping Engineering in Manganese Oxides for Aqueous Zinc-Ion Batteries. Ji F; Yu J; Hou S; Hu J; Li S Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998410 [TBL] [Abstract][Full Text] [Related]
12. Stabilizing Zinc Hexacyanoferrate Cathode by Low Contents of Cs Cations for Aqueous Zn-Ion Batteries. Pan Z; Ni G; Li Y; Shi Y; Zhu F; Cui P; Zhou C ChemSusChem; 2024 Nov; 17(21):e202400713. PubMed ID: 38785104 [TBL] [Abstract][Full Text] [Related]
13. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte. Liu Z; Pulletikurthi G; Endres F ACS Appl Mater Interfaces; 2016 May; 8(19):12158-64. PubMed ID: 27119430 [TBL] [Abstract][Full Text] [Related]
14. Boosting the Cycling Stability of Aqueous Zinc-Ion Batteries through Nanofibrous Coating of a Bead-like MnO Ding L; Gao J; Yan T; Cheng C; Chang LY; Zhang N; Feng X; Zhang L ACS Appl Mater Interfaces; 2022 Apr; 14(15):17570-17577. PubMed ID: 35390250 [TBL] [Abstract][Full Text] [Related]
16. Decoration of nickel hexacyanoferrate nanocubes onto reduced graphene oxide sheets as high-performance cathode material for rechargeable aqueous zinc-ion batteries. Xue Y; Chen Y; Shen X; Zhong A; Ji Z; Cheng J; Kong L; Yuan A J Colloid Interface Sci; 2022 Mar; 609():297-306. PubMed ID: 34896830 [TBL] [Abstract][Full Text] [Related]
17. Regulating the zinc ion transport kinetics of Mn Guo YF; Luo ZH; Zhang N; Wang PF; Liu ZL; Lai QZ; Shu J; Yi TF J Colloid Interface Sci; 2025 Jan; 677(Pt A):459-469. PubMed ID: 39098279 [TBL] [Abstract][Full Text] [Related]
18. Unlocking Layered Double Hydroxide as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries. Zhao Y; Zhang P; Liang J; Xia X; Ren L; Song L; Liu W; Sun X Adv Mater; 2022 Sep; 34(37):e2204320. PubMed ID: 35901506 [TBL] [Abstract][Full Text] [Related]
19. High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-manganese dioxide coated by polypyrrole. Xu JW; Gao QL; Xia YM; Lin XS; Liu WL; Ren MM; Kong FG; Wang SJ; Lin C J Colloid Interface Sci; 2021 Sep; 598():419-429. PubMed ID: 33930746 [TBL] [Abstract][Full Text] [Related]
20. Copper Hexacyanoferrate Solid-State Electrolyte Protection Layer on Zn Metal Anode for High-Performance Aqueous Zinc-Ion Batteries. Liu Y; Li Y; Huang X; Cao H; Zheng Q; Huo Y; Zhao J; Lin D; Xu B Small; 2022 Sep; 18(38):e2203061. PubMed ID: 35986433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]