These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38998755)

  • 21. Nano metamaterials for ultrasensitive Terahertz biosensing.
    Lee DK; Kang JH; Kwon J; Lee JS; Lee S; Woo DH; Kim JH; Song CS; Park QH; Seo M
    Sci Rep; 2017 Aug; 7(1):8146. PubMed ID: 28811551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Terahertz Metamaterial with Multiple Resonances for Biosensing Application.
    Ou H; Lu F; Xu Z; Lin YS
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32485805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-band terahertz metamaterial sensor and its sensing capacity enhanced with a central-relief design.
    Guo S; Li C; Wang D; Chen W; Gao S; Wu G; Xiong J
    Appl Opt; 2024 Mar; 63(8):1962-1970. PubMed ID: 38568636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance.
    Lai R; Chen H; Zhou Z; Yi Z; Tang B; Chen J; Yi Y; Tang C; Zhang J; Sun T
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide.
    Huang J; Li J; Yang Y; Li J; Li J; Zhang Y; Yao J
    Opt Express; 2020 Mar; 28(5):7018-7027. PubMed ID: 32225937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Substrate Etching on Terahertz Metamaterial Resonances and Its Liquid Sensing Applications.
    Park SJ; Cunningham J
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms and applications of terahertz metamaterial sensing: a review.
    Xu W; Xie L; Ying Y
    Nanoscale; 2017 Sep; 9(37):13864-13878. PubMed ID: 28895970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Sensitive Dual-Band Terahertz Metamaterial Absorber for Biomedical Applications: Simulation and Experiment.
    Abdulkarim YI; Altintas O; Karim AS; Awl HN; Muhammadsharif FF; Alkurt FÖ; Bakir M; Appasani B; Karaaslan M; Dong J
    ACS Omega; 2022 Oct; 7(42):38094-38104. PubMed ID: 36312388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-metal terahertz metamaterial biosensor for protein detection.
    Wang G; Zhu F; Lang T; Liu J; Hong Z; Qin J
    Nanoscale Res Lett; 2021 Jun; 16(1):109. PubMed ID: 34191133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of a Terahertz System Combined with an X-Shaped Metamaterial Microfluidic Cartridge.
    Huang ST; Hsu SF; Tang KY; Yen TJ; Yao DJ
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Terahertz ultrasensitive dual-core photonic crystal fiber microfluidic sensor for detecting high-absorption analytes.
    Li S; Zhang H; Fan F; Chang S
    Appl Opt; 2021 Jul; 60(19):5716-5722. PubMed ID: 34263866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A high
    Wang D; Xu KD; Luo S; Cui Y; Zhang L; Cui J
    Nanoscale; 2023 Feb; 15(7):3398-3407. PubMed ID: 36722909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon.
    Chen X; Fan W
    Sci Rep; 2017 May; 7(1):2092. PubMed ID: 28522859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine learning assisted hepta band THz metamaterial absorber for biomedical applications.
    Jain P; Chhabra H; Chauhan U; Prakash K; Gupta A; Soliman MS; Islam MS; Islam MT
    Sci Rep; 2023 Jan; 13(1):1792. PubMed ID: 36720922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamically changeable terahertz metamaterial absorbers with intelligent switch and high sensitivity and wide and narrow band perfect absorption.
    Zhao Q; Yi Z; Bian L; Liu H; Yang H; Cheng S; Li G; Zeng L; Li H; Wu P
    Phys Chem Chem Phys; 2023 Aug; 25(30):20706-20714. PubMed ID: 37489769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Realization of absorption, filtering, and sensing in a single metamaterial structure combined with functional materials.
    Feng QY; Yan DX; Li XJ; Li JN
    Appl Opt; 2022 May; 61(15):4336-4343. PubMed ID: 36256270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide.
    Wu G; Jiao X; Wang Y; Zhao Z; Wang Y; Liu J
    Opt Express; 2021 Jan; 29(2):2703-2711. PubMed ID: 33726461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Terahertz Plasmonic Sensor Based on Metal-Insulator Composite Woven-Wire Mesh.
    Lu JY; Chen PL; You B
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene.
    Lai R; Shi P; Yi Z; Li H; Yi Y
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-Broadband Tunable Terahertz Metamaterial Absorber Based on Double-Layer Vanadium Dioxide Square Ring Arrays.
    Zhang P; Chen G; Hou Z; Zhang Y; Shen J; Li C; Zhao M; Gao Z; Li Z; Tang T
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.