These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38999579)

  • 1. Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses.
    Kumar T; Wang JG; Xu CH; Lu X; Mao J; Lin XQ; Kong CY; Li CJ; Li XJ; Tian CY; Ebid MHM; Liu XL; Liu HB
    Plants (Basel); 2024 Jun; 13(13):. PubMed ID: 38999579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current breeding and genomic approaches to enhance the cane and sugar productivity under abiotic stress conditions.
    Meena MR; Kumar R; Chinnaswamy A; Karuppaiyan R; Kulshreshtha N; Ram B
    3 Biotech; 2020 Oct; 10(10):440. PubMed ID: 33014683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic engineering: an efficient approach to mitigating biotic and abiotic stresses in sugarcane cultivation.
    Verma KK; Song XP; Budeguer F; Nikpay A; Enrique R; Singh M; Zhang BQ; Wu JM; Li YR
    Plant Signal Behav; 2022 Dec; 17(1):2108253. PubMed ID: 35959678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants.
    Kumar M; Prusty MR; Pandey MK; Singh PK; Bohra A; Guo B; Varshney RK
    Front Plant Sci; 2023; 14():1157678. PubMed ID: 37143874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugarcane Omics: An Update on the Current Status of Research and Crop Improvement.
    Ali A; Khan M; Sharif R; Mujtaba M; Gao SJ
    Plants (Basel); 2019 Sep; 8(9):. PubMed ID: 31547331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants.
    Bhat MA; Mir RA; Kumar V; Shah AA; Zargar SM; Rahman S; Jan AT
    Physiol Plant; 2021 Jun; 172(2):1255-1268. PubMed ID: 33576013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 based stress tolerance: New hope for abiotic stress tolerance in chickpea (Cicer arietinum).
    Razzaq MK; Akhter M; Ahmad RM; Cheema KL; Hina A; Karikari B; Raza G; Xing G; Gai J; Khurshid M
    Mol Biol Rep; 2022 Sep; 49(9):8977-8985. PubMed ID: 35429317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet.
    Misra V; Mall AK; Pandey H; Srivastava S; Sharma A
    Front Genet; 2023; 14():1235855. PubMed ID: 38028586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects.
    Salava H; Thula S; Mohan V; Kumar R; Maghuly F
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33445555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic and Proteomic Landscape of Sugarcane Response to Biotic and Abiotic Stressors.
    Li AM; Liao F; Wang M; Chen ZL; Qin CX; Huang RQ; Verma KK; Li YR; Que YX; Pan YQ; Huang DL
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adoption of CRISPR-Cas for crop production: present status and future prospects.
    Akanmu AO; Asemoloye MD; Marchisio MA; Babalola OO
    PeerJ; 2024; 12():e17402. PubMed ID: 38860212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance.
    Maharajan T; Krishna TPA; Rakkammal K; Ceasar SA; Ramesh M
    Planta; 2022 Nov; 256(6):106. PubMed ID: 36326904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging the sugarcane CRISPR/Cas9 technique for genetic improvement of non-cultivated grasses.
    Li C; Iqbal MA
    Front Plant Sci; 2024; 15():1369416. PubMed ID: 38601306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Transformation of Sugarcane, Current Status and Future Prospects.
    Budeguer F; Enrique R; Perera MF; Racedo J; Castagnaro AP; Noguera AS; Welin B
    Front Plant Sci; 2021; 12():768609. PubMed ID: 34858464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VIGE: virus-induced genome editing for improving abiotic and biotic stress traits in plants.
    Gentzel IN; Ohlson EW; Redinbaugh MG; Wang GL
    Stress Biol; 2022 Jan; 2(1):2. PubMed ID: 37676518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Databases and Gene Editing Tools for Enhancing Crop Resistance against Abiotic Stress.
    Joshi A; Yang SY; Song HG; Min J; Lee JH
    Biology (Basel); 2023 Nov; 12(11):. PubMed ID: 37997999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants.
    Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S
    Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.