These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 390)

  • 1. Use of 5-deazaFAD to study hydrogen transfer in the D-amino acid oxidase reaction.
    Hersh LB; Jorns MS
    J Biol Chem; 1975 Nov; 250(22):8728-34. PubMed ID: 390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleophilic addition reactions of free and enzyme-bound deazaflavin.
    Jorns MS; Hersh LB
    J Biol Chem; 1976 Aug; 251(16):4872-81. PubMed ID: 8450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of flavin structure and redox state on catalysis by and flavin-pterin energy transfer in Escherichia coli DNA photolyase.
    Chanderkar LP; Jorns MS
    Biochemistry; 1991 Jan; 30(3):745-54. PubMed ID: 1988061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the interaction between D-amino acid oxidase and quasi-substrates.
    Shiga K; Horiike K; Isomoto A; Yamano T
    J Biochem; 1976 Nov; 80(5):1101-8. PubMed ID: 12151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13C-NMR studies on the reaction intermediates of porcine kidney D-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide.
    Miura R; Miyake Y
    J Biochem; 1987 Dec; 102(6):1345-54. PubMed ID: 2896189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation of porcine D-amino acid oxidase as studied by protein fluorescence and optical rotatory dispersion.
    Tu SC; McCormick DB
    Biochemistry; 1974 Feb; 13(5):893-9. PubMed ID: 4149797
    [No Abstract]   [Full Text] [Related]  

  • 7. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase.
    Zhang H; Gruenke L; Saribas AS; Im SC; Shen AL; Kasper CB; Waskell L
    Biochemistry; 2003 Jun; 42(22):6804-13. PubMed ID: 12779335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the reaction of D-amino acid oxidase with beta-cyano-D-alanine. Observation of an intermediary stable charge transfer complex.
    Miura R; Shiga K; Miyake Y; Watari H; Yamano T
    J Biochem; 1980 May; 87(5):1469-81. PubMed ID: 6104660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of flavin enzymes with 1-carba-1 -deazaflavin coenzyme analogues.
    Spencer R; Fisher J; Walsh C
    Biochemistry; 1977 Aug; 16(16):3594-602. PubMed ID: 19058
    [No Abstract]   [Full Text] [Related]  

  • 11. Escherichia coli glyoxalate carboligase. Properties and reconstitution with 5-deazaFAD and 1,5-dihydrodeazaFADH2.
    Cromartie TH; Walsh CT
    J Biol Chem; 1976 Jan; 251(2):329-33. PubMed ID: 1107332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic control of D-amino acid oxidase by benzoate binding.
    Van den Berghe-Snorek S; Stankovich MT
    J Biol Chem; 1985 Mar; 260(6):3373-9. PubMed ID: 2857720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein.
    Hassan-Abdallah A; Bruckner RC; Zhao G; Jorns MS
    Biochemistry; 2005 May; 44(17):6452-62. PubMed ID: 15850379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Methylglutamate synthetase. Substrate-flavin hydrogen transfer reactions probed with deazaflavin mononucleotide.
    Jorns MS; Hersh LB
    J Biol Chem; 1975 May; 250(10):3620-8. PubMed ID: 1126928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of Escherichia coli thioredoxin reductase with 1-deazaFAD. Evidence for 1-deazaFAD C-4a adduct formation linked to the ionization of an active site base.
    O'Donnell ME; Williams CH
    J Biol Chem; 1984 Feb; 259(4):2243-51. PubMed ID: 6365906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of enzyme-bound 5-deazaflavin with peroxides. Pyrimidine ring contraction via an epoxide intermediate.
    Jorns MS; Ballenger C; Kinney G; Pokora A; Vargo D
    J Biol Chem; 1983 Jul; 258(14):8561-7. PubMed ID: 6134730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization and preliminary crystallographic data of N6-(6-carbamoylhexyl)-FAD-D-amino-acid oxidase from pig kidney, a semi-synthetic oxidase.
    Stocker A; Hecht HJ; Bückmann AF
    Eur J Biochem; 1996 Jun; 238(2):519-28. PubMed ID: 8681967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Letter: The formation of a semiquinone form of deazaFAD bound to D-amino acid oxidase.
    Hersh LB; Jorns MS; Petterson J; Curie M
    J Am Chem Soc; 1976 Feb; 98(3):865-7. PubMed ID: 1439
    [No Abstract]   [Full Text] [Related]  

  • 19. On the structures of flavoprotein D-amino acid oxidase purple intermediates. A resonance Raman study.
    Nishina Y; Shiga K; Miura R; Tojo H; Ohta M; Miyake Y; Yamano T; Watari H
    J Biochem; 1983 Dec; 94(6):1979-90. PubMed ID: 6142880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism of D-amino acid oxidases from Rhodotorula gracilis and Trigonopsis variabilis.
    Pollegioni L; Langkau B; Tischer W; Ghisla S; Pilone MS
    J Biol Chem; 1993 Jul; 268(19):13850-7. PubMed ID: 8100225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.