These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39000030)

  • 1. New Step in Understanding the Pathogenetic Mechanism of Sudden Infant Death Syndrome: Involvement of the Pontine Reticular Gigantocellular Nucleus.
    Lavezzi AM; Mehboob R; Piscioli F; Pusiol T
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mesencephalic Periaqueductal Gray, a Further Structure Involved in Breathing Failure Underlying Sudden Infant Death Syndrome.
    Lavezzi AM; Mehboob R
    ASN Neuro; 2021; 13():17590914211048260. PubMed ID: 34623930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substantia Nigra Abnormalities Provide New Insight on the Neural Mechanisms Underlying the Sleep-Arousal Phase Dysfunctions in Sudden Infant Death Syndrome.
    Lavezzi AM; Mehboob R; Alfonsi G; Ferrero S
    ASN Neuro; 2020; 12():1759091420962695. PubMed ID: 32993318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal smoking and sudden infant death syndrome: epidemiological study related to pathology.
    Matturri L; Ottaviani G; Lavezzi AM
    Virchows Arch; 2006 Dec; 449(6):697-706. PubMed ID: 17091255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The triple risk hypotheses in sudden infant death syndrome.
    Guntheroth WG; Spiers PS
    Pediatrics; 2002 Nov; 110(5):e64. PubMed ID: 12415070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bedsharing and maternal smoking in a population-based survey of new mothers.
    Lahr MB; Rosenberg KD; Lapidus JA
    Pediatrics; 2005 Oct; 116(4):e530-42. PubMed ID: 16199682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired orexin receptor expression in the Kölliker-Fuse nucleus in sudden infant death syndrome: possible involvement of this nucleus in arousal pathophysiology.
    Lavezzi AM; Ferrero S; Roncati L; Matturri L; Pusiol T
    Neurol Res; 2016 Aug; 38(8):706-16. PubMed ID: 27353953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed dendritic development of catecholaminergic neurons in the ventrolateral medulla of children who died of sudden infant death syndrome.
    Takashima S; Becker LE
    Neuropediatrics; 1991 May; 22(2):97-9. PubMed ID: 1677455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catecholaminergic neurons in the brain-stem and sleep apnea in SIDS victims.
    Sawaguchi T; Ozawa Y; Patricia F; Kadhim H; Groswasser J; Sottiaux M; Takashima S; Nishida H; Kahn A
    Early Hum Dev; 2003 Dec; 75 Suppl():S41-50. PubMed ID: 14693390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors.
    Machaalani R; Waters KA
    Brain; 2008 Jan; 131(Pt 1):218-28. PubMed ID: 18084013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sudden infant death syndrome: increased synaptic density in the central reticular nucleus of the medulla.
    O'Kusky JR; Norman MG
    J Neuropathol Exp Neurol; 1994 May; 53(3):263-71. PubMed ID: 8176409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The correlation between microtubule-associated protein 2 in the brainstem of SIDS victims and physiological data on sleep apnea.
    Sawaguchi T; Patricia F; Kadhim H; Groswasser J; Sottiaux M; Nishida H; Kahn A
    Early Hum Dev; 2003 Dec; 75 Suppl():S87-97. PubMed ID: 14693395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome.
    Hunt NJ; Waters KA; Rodriguez ML; Machaalani R
    Acta Neuropathol; 2015 Aug; 130(2):185-98. PubMed ID: 25953524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brainstem immaturity in sudden infant death syndrome: a quantitative rapid Golgi study of dendritic spines in 95 infants.
    Quattrochi JJ; McBride PT; Yates AJ
    Brain Res; 1985 Jan; 325(1-2):39-48. PubMed ID: 3978432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental alterations of the respiratory human retrotrapezoid nucleus in sudden unexplained fetal and infant death.
    Lavezzi AM; Weese-Mayer DE; Yu MY; Jennings LJ; Corna MF; Casale V; Oneda R; Matturri L
    Auton Neurosci; 2012 Sep; 170(1-2):12-9. PubMed ID: 22796552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leptomeningeal neurons are a common finding in infants and are increased in sudden infant death syndrome.
    Rickert CH; Gros O; Nolte KW; Vennemann M; Bajanowski T; Brinkmann B
    Acta Neuropathol; 2009 Mar; 117(3):275-82. PubMed ID: 19205709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mesencephalic nucleus of the trigeminal nerve and the SIDS.
    Andrisani G; Andrisani G
    Med Hypotheses; 2015 Jan; 84(1):8-10. PubMed ID: 25486983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk factors for sudden infant death syndrome following the prevention campaign in New Zealand: a prospective study.
    Mitchell EA; Tuohy PG; Brunt JM; Thompson JM; Clements MS; Stewart AW; Ford RP; Taylor BJ
    Pediatrics; 1997 Nov; 100(5):835-40. PubMed ID: 9346984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active caspase-3 in the sudden infant death syndrome (SIDS) brainstem.
    Machaalani R; Rodriguez M; Waters KA
    Acta Neuropathol; 2007 May; 113(5):577-84. PubMed ID: 17364171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The correlation between ubiquitin in the brainstem and sleep apnea in SIDS victims.
    Sawaguchi T; Patricia F; Kadhim H; Groswasser J; Sottiaux M; Nishida H; Kahn A
    Early Hum Dev; 2003 Dec; 75 Suppl():S75-86. PubMed ID: 14693394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.