These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 39000239)
1. Mesenchymal Stem Cell-Secreted Exosomes and Soluble Signals Regulate Breast Cancer Metastatic Dormancy: Current Progress and Future Outlook. Dai B; Clark AM; Wells A Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000239 [TBL] [Abstract][Full Text] [Related]
2. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Ono M; Kosaka N; Tominaga N; Yoshioka Y; Takeshita F; Takahashi RU; Yoshida M; Tsuda H; Tamura K; Ochiya T Sci Signal; 2014 Jul; 7(332):ra63. PubMed ID: 24985346 [TBL] [Abstract][Full Text] [Related]
3. Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Walker ND; Elias M; Guiro K; Bhatia R; Greco SJ; Bryan M; Gergues M; Sandiford OA; Ponzio NM; Leibovich SJ; Rameshwar P Cell Death Dis; 2019 Jan; 10(2):59. PubMed ID: 30683851 [TBL] [Abstract][Full Text] [Related]
4. Exosomes of Mesenchymal Stem Cells as a Proper Vehicle for Transfecting miR-145 into the Breast Cancer Cell Line and Its Effect on Metastasis. Sheykhhasan M; Kalhor N; Sheikholeslami A; Dolati M; Amini E; Fazaeli H Biomed Res Int; 2021; 2021():5516078. PubMed ID: 34307654 [TBL] [Abstract][Full Text] [Related]
5. Mesenchymal Stem Cell-Secreted Extracellular Vesicles Instruct Stepwise Dedifferentiation of Breast Cancer Cells into Dormancy at the Bone Marrow Perivascular Region. Sandiford OA; Donnelly RJ; El-Far MH; Burgmeyer LM; Sinha G; Pamarthi SH; Sherman LS; Ferrer AI; DeVore DE; Patel SA; Naaldijk Y; Alonso S; Barak P; Bryan M; Ponzio NM; Narayanan R; Etchegaray JP; Kumar R; Rameshwar P Cancer Res; 2021 Mar; 81(6):1567-1582. PubMed ID: 33500249 [TBL] [Abstract][Full Text] [Related]
6. Mesenchymal Stem Cell-Derived Exosomes Stimulate Cycling Quiescence and Early Breast Cancer Dormancy in Bone Marrow. Bliss SA; Sinha G; Sandiford OA; Williams LM; Engelberth DJ; Guiro K; Isenalumhe LL; Greco SJ; Ayer S; Bryan M; Kumar R; Ponzio NM; Rameshwar P Cancer Res; 2016 Oct; 76(19):5832-5844. PubMed ID: 27569215 [TBL] [Abstract][Full Text] [Related]
7. Interactions Between Disseminated Tumor Cells and Bone Marrow Stromal Cells Regulate Tumor Dormancy. Widner DB; Park SH; Eber MR; Shiozawa Y Curr Osteoporos Rep; 2018 Oct; 16(5):596-602. PubMed ID: 30128835 [TBL] [Abstract][Full Text] [Related]
8. Breast Cancer Dormancy in Bone. Clements ME; Johnson RW Curr Osteoporos Rep; 2019 Oct; 17(5):353-361. PubMed ID: 31468498 [TBL] [Abstract][Full Text] [Related]
9. The bone marrow niche in support of breast cancer dormancy. Walker ND; Patel J; Munoz JL; Hu M; Guiro K; Sinha G; Rameshwar P Cancer Lett; 2016 Sep; 380(1):263-71. PubMed ID: 26546045 [TBL] [Abstract][Full Text] [Related]
10. Bi-directional exosome-driven intercommunication between the hepatic niche and cancer cells. Dioufa N; Clark AM; Ma B; Beckwitt CH; Wells A Mol Cancer; 2017 Nov; 16(1):172. PubMed ID: 29137633 [TBL] [Abstract][Full Text] [Related]
11. A Senescence-Associated Secretory Phenotype of Bone Marrow Mesenchymal Stem Cells Inhibits the Viability of Breast Cancer Cells. Li M; Liu JX; Ma B; Liu JY; Chen J; Jin F; Hu CH; Xu HK; Zheng CX; Hou R Stem Cell Rev Rep; 2024 May; 20(4):1093-1105. PubMed ID: 38457059 [TBL] [Abstract][Full Text] [Related]
12. Non-coding RNA as mediators in microenvironment-breast cancer cell communication. Patel JS; Hu M; Sinha G; Walker ND; Sherman LS; Gallagher A; Rameshwar P Cancer Lett; 2016 Sep; 380(1):289-95. PubMed ID: 26582656 [TBL] [Abstract][Full Text] [Related]
13. Natural Killer Cell Regulation of Breast Cancer Stem Cells Mediates Metastatic Dormancy. Bushnell GG; Sharma D; Wilmot HC; Zheng M; Fashina TD; Hutchens CM; Osipov S; Burness M; Wicha MS Cancer Res; 2024 Oct; 84(20):3337-3353. PubMed ID: 39106452 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Pakravan K; Babashah S; Sadeghizadeh M; Mowla SJ; Mossahebi-Mohammadi M; Ataei F; Dana N; Javan M Cell Oncol (Dordr); 2017 Oct; 40(5):457-470. PubMed ID: 28741069 [TBL] [Abstract][Full Text] [Related]
15. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Wang S; Su X; Xu M; Xiao X; Li X; Li H; Keating A; Zhao RC Stem Cell Res Ther; 2019 Apr; 10(1):117. PubMed ID: 30971292 [TBL] [Abstract][Full Text] [Related]
16. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Eltoukhy HS; Sinha G; Moore CA; Gergues M; Rameshwar P Biochimie; 2018 Dec; 155():92-103. PubMed ID: 29859990 [TBL] [Abstract][Full Text] [Related]
17. Delivery of LNA-antimiR-142-3p by Mesenchymal Stem Cells-Derived Exosomes to Breast Cancer Stem Cells Reduces Tumorigenicity. Naseri Z; Oskuee RK; Forouzandeh-Moghadam M; Jaafari MR Stem Cell Rev Rep; 2020 Jun; 16(3):541-556. PubMed ID: 31898802 [TBL] [Abstract][Full Text] [Related]
18. Disseminated cancer cells in breast cancer: Mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. Ramamoorthi G; Kodumudi K; Gallen C; Zachariah NN; Basu A; Albert G; Beyer A; Snyder C; Wiener D; Costa RLB; Czerniecki BJ Semin Cancer Biol; 2022 Jan; 78():78-89. PubMed ID: 33626407 [TBL] [Abstract][Full Text] [Related]
19. Adipose MSCs Suppress MCF7 and MDA-MB-231 Breast Cancer Metastasis and EMT Pathways Leading to Dormancy via Exosomal-miRNAs Following Co-Culture Interaction. Mohd Ali N; Yeap SK; Ho WY; Boo L; Ky H; Satharasinghe DA; Tan SW; Cheong SK; Huang HD; Lan KC; Chiew MY; Ong HK Pharmaceuticals (Basel); 2020 Dec; 14(1):. PubMed ID: 33374139 [TBL] [Abstract][Full Text] [Related]
20. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Hashimoto K; Ochi H; Sunamura S; Kosaka N; Mabuchi Y; Fukuda T; Yao K; Kanda H; Ae K; Okawa A; Akazawa C; Ochiya T; Futakuchi M; Takeda S; Sato S Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2204-2209. PubMed ID: 29440427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]