These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 3900035)
1. Nucleotide sequence analysis of the cat gene of Proteus mirabilis: comparison with the type I (Tn9) cat gene. Charles IG; Keyte JW; Shaw WV J Bacteriol; 1985 Oct; 164(1):123-9. PubMed ID: 3900035 [TBL] [Abstract][Full Text] [Related]
2. Resistance to chloramphenicol in Proteus mirabilis by expression of a chromosomal gene for chloramphenicol acetyltransferase. Charles IG; Harford S; Brookfield JF; Shaw WV J Bacteriol; 1985 Oct; 164(1):114-22. PubMed ID: 3900034 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide sequence of a Bacillus pumilus gene specifying chloramphenicol acetyltransferase. Harwood CR; Williams DM; Lovett PS Gene; 1983 Oct; 24(2-3):163-9. PubMed ID: 6315534 [TBL] [Abstract][Full Text] [Related]
5. Sequence and genetic analysis of multiple flagellin-encoding genes from Proteus mirabilis. Belas R; Flaherty D Gene; 1994 Oct; 148(1):33-41. PubMed ID: 7926835 [TBL] [Abstract][Full Text] [Related]
6. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Zhao H; Li X; Johnson DE; Blomfield I; Mobley HL Mol Microbiol; 1997 Mar; 23(5):1009-19. PubMed ID: 9076737 [TBL] [Abstract][Full Text] [Related]
7. Proteus mirabilis clinical isolate harbouring a new variant of Salmonella genomic island 1 containing the multiple antibiotic resistance region. Ahmed AM; Hussein AI; Shimamoto T J Antimicrob Chemother; 2007 Feb; 59(2):184-90. PubMed ID: 17114173 [TBL] [Abstract][Full Text] [Related]
8. Primary structure of a chloramphenicol acetyltransferase specified by R plasmids. Shaw WV; Packman LC; Burleigh BD; Dell A; Morris HR; Hartley BS Nature; 1979 Dec 20-27; 282(5741):870-2. PubMed ID: 390404 [TBL] [Abstract][Full Text] [Related]
9. Mutations that affect the translation efficiency of Tn9-derived cat gene in Bacillus subtilis. Lin CK; Goldfarb DS; Doi RH; Rodriguez RL Proc Natl Acad Sci U S A; 1985 Jan; 82(1):173-7. PubMed ID: 2982142 [TBL] [Abstract][Full Text] [Related]
10. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. Horinouchi S; Weisblum B J Bacteriol; 1982 May; 150(2):815-25. PubMed ID: 6950931 [TBL] [Abstract][Full Text] [Related]
11. In vitro expression of a Tn9-derived chloramphenicol acetyltransferase gene fusion by using a Bacillus subtilis system. Zaghloul TI; Doi RH J Bacteriol; 1987 Mar; 169(3):1212-6. PubMed ID: 3102458 [TBL] [Abstract][Full Text] [Related]
13. The chloramphenicol acetyltransferase gene of Tn2424: a new breed of cat. Parent R; Roy PH J Bacteriol; 1992 May; 174(9):2891-7. PubMed ID: 1314803 [TBL] [Abstract][Full Text] [Related]
14. Effects of alterations in the translation control region on bacterial gene expression: use of cat gene constructs transcribed from the lac promoter as a model system. Schottel JL; Sninsky JJ; Cohen SN Gene; 1984 May; 28(2):177-93. PubMed ID: 6376284 [TBL] [Abstract][Full Text] [Related]
15. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis. Goldfarb DS; Rodriguez RL; Doi RH Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552 [TBL] [Abstract][Full Text] [Related]
16. Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Alton NK; Vapnek D Nature; 1979 Dec 20-27; 282(5741):864-9. PubMed ID: 390403 [TBL] [Abstract][Full Text] [Related]
17. Sequence and expression characteristics of a shuttle chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli. Hadfield C; Cashmore AM; Meacock PA Gene; 1987; 52(1):59-70. PubMed ID: 3036659 [TBL] [Abstract][Full Text] [Related]
18. Site in the cat-86 regulatory leader that permits amicetin to induce expression of the gene. Kim UJ; Ambulos NP; Duvall EJ; Lorton MA; Lovett PS J Bacteriol; 1988 Jul; 170(7):2933-8. PubMed ID: 3133355 [TBL] [Abstract][Full Text] [Related]
19. Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis. Saito R; Sato K; Kumita W; Inami N; Nishiyama H; Okamura N; Moriya K; Koike K J Antimicrob Chemother; 2006 Sep; 58(3):673-7. PubMed ID: 16870650 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of chloramphenicol acetyltransferase and Tn9 among chloramphenicol-resistant enteric bacteria from humans and animals. Matthews PR; Cameron FH; Stewart PR J Antimicrob Chemother; 1983 Jun; 11(6):535-42. PubMed ID: 6576996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]