These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 39000621)

  • 1. Degradation Behaviors of Polylactic Acid, Polyglycolic Acid, and Their Copolymer Films in Simulated Marine Environments.
    Chen Z; Zhang X; Fu Y; Jin Y; Weng Y; Bian X; Chen X
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PLGA Barrier Materials from CO
    Murcia Valderrama MA; van Putten RJ; Gruter GM
    ACS Appl Polym Mater; 2020 Jul; 2(7):2706-2718. PubMed ID: 32954354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Degradation Studies of PGA-PLA Block Copolymer and Their Histochemical Analysis for Spinal-Fixing Application.
    Yoon SK; Chung DJ
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Analysis of Temperature-Dependent Curcumin Release from Poly(lactic-co-glycolic acid)/Poly(lactic acid) Polymer Nanoparticles.
    Sunazuka Y; Ueda K; Higashi K; Wada K; Moribe K
    Mol Pharm; 2024 Mar; 21(3):1424-1435. PubMed ID: 38324797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioresorbable films of polycaprolactone blended with poly(lactic acid) or poly(lactic-co-glycolic acid).
    Dodda JM; Azar MG; Bělský P; Šlouf M; Gajdošová V; Kasi PB; Anerillas LO; Kovářík T
    Int J Biol Macromol; 2023 Sep; 248():126654. PubMed ID: 37659482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.
    Grayson AC; Voskerician G; Lynn A; Anderson JM; Cima MJ; Langer R
    J Biomater Sci Polym Ed; 2004; 15(10):1281-304. PubMed ID: 15559850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films.
    Lu L; Garcia CA; Mikos AG
    J Biomed Mater Res; 1999 Aug; 46(2):236-44. PubMed ID: 10380002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.
    Park TG
    Biomaterials; 1995 Oct; 16(15):1123-30. PubMed ID: 8562787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monomer sequence in PLGA microparticles: Effects on acidic microclimates and in vivo inflammatory response.
    Washington MA; Balmert SC; Fedorchak MV; Little SR; Watkins SC; Meyer TY
    Acta Biomater; 2018 Jan; 65():259-271. PubMed ID: 29101019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vancomycin release from poly(D,L-lactide) and poly(lactide-co-glycolide) disks.
    Ozalp Y; Ozdemir N; Hasirci V
    J Microencapsul; 2002; 19(1):83-94. PubMed ID: 11811762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid).
    Chen Y; Yang Z; Liu C; Wang C; Zhao S; Yang J; Sun H; Zhang Z; Kong D; Song C
    Int J Nanomedicine; 2013; 8():4315-26. PubMed ID: 24235829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthopaedic applications for PLA-PGA biodegradable polymers.
    Athanasiou KA; Agrawal CM; Barber FA; Burkhart SS
    Arthroscopy; 1998 Oct; 14(7):726-37. PubMed ID: 9788368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.
    Rong X; Yuan W; Lu Y; Mo X
    Int J Nanomedicine; 2014; 9():3057-68. PubMed ID: 25028546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound-induced degradation of PLA and PLGA during microsphere processing: influence of formulation variables.
    Reich G
    Eur J Pharm Biopharm; 1998 Mar; 45(2):165-71. PubMed ID: 9704913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation, characterization, and in vitro evaluation of 1- and 4-month controlled release orntide PLA and PLGA microspheres.
    Kostanski JW; Thanoo BC; DeLuca PP
    Pharm Dev Technol; 2000; 5(4):585-96. PubMed ID: 11109259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donepezil accelerates the release of PLGA microparticles via catalyzing the polymer degradation regardless of the end groups and molecular weights.
    Quan P; Guo W; LinYang ; Cun D; Yang M
    Int J Pharm; 2023 Feb; 632():122566. PubMed ID: 36586633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios.
    Miller RA; Brady JM; Cutright DE
    J Biomed Mater Res; 1977 Sep; 11(5):711-9. PubMed ID: 893490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers.
    Stolnik S; Dunn SE; Garnett MC; Davies MC; Coombes AG; Taylor DC; Irving MP; Purkiss SC; Tadros TF; Davis SS
    Pharm Res; 1994 Dec; 11(12):1800-8. PubMed ID: 7899246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.