These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 39000642)

  • 1. Effects of Particle Size on Mechanical Properties and Forming Accuracy of
    Abdelmagid AAA; Idriss AIB; Yang CM
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Laser Sintering (SLS) and Post-Processing of Prosopis Chilensis/Polyethersulfone Composite (PCPC).
    Idriss AIB; Li J; Wang Y; Guo Y; Elfaki EA; Adam SA
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32645924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Laser Sintering Parameter Optimization of Prosopis Chilensis/Polyethersulfone Composite Fabricated by AFS-360 SLS.
    Idriss AIB; Li J; Guo Y; Shuhui T; Wang Y; Elfaki EA; Ahmed GA
    3D Print Addit Manuf; 2023 Aug; 10(4):697-710. PubMed ID: 37609577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Particle Size on the Mechanical Performance and Sintering Quality of Peanut Husk Powder/PES Composites Fabricated through Selective Laser Sintering.
    Idriss AIB; Yang CM; Li J; Guo Y; Liu J; Abdelmagid AAA; Ahmed GA; Zhang H
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Sintering Quality and Mechanical Properties of Peanut Husk Powder/Polyether Sulfone Composite for Selective Laser Sintering.
    Idriss AIB; Li J; Guo Y; Wang Y; Elfaki EA; Ahmed EAI
    3D Print Addit Manuf; 2023 Feb; 10(1):111-123. PubMed ID: 36998798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Particle Size on Performance of Selective Laser Sintering Walnut Shell/Co-PES Powder.
    Yu Y; Jiang M; Wang S; Guo Y; Jiang T; Zeng W; Zhuang Y
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Carbon Nanotubes on the Mechanical Properties of Wood Plastic Composites by Selective Laser Sintering.
    Zhang Y; Fang J; Li J; Guo Y; Wang Q
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement on Selective Laser Sintering and Post-Processing of Polystyrene.
    Zeng Z; Deng X; Cui J; Jiang H; Yan S; Peng B
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31159446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the material properties of a poly(D,L-lactide)/β-tricalcium phosphate composite on the processability by selective laser sintering.
    Gayer C; Abert J; Bullemer M; Grom S; Jauer L; Meiners W; Reinauer F; Vučak M; Wissenbach K; Poprawe R; Schleifenbaum JH; Fischer H
    J Mech Behav Biomed Mater; 2018 Nov; 87():267-278. PubMed ID: 30098516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Characteristics of Walnut Shell/Co-PES/Co-PA Powder Produced by Selective Laser Sintering.
    Yu Y; Guo Y; Jiang T; Li J; Jiang K; Zhang H; Zhuang Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combination of Al
    Yuan Y; Wu W; Hu H; Liu D; Shen H; Wang Z
    RSC Adv; 2021 Jan; 11(4):1984-1991. PubMed ID: 35424151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Properties Variation in Wood-Plastic Composites with a Mixed Wood Fiber Size.
    Xu H; Yang Y; Li L; Liu B; Fu X; Yang X; Cao Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering.
    Kolan KC; Leu MC; Hilmas GE; Velez M
    J Mech Behav Biomed Mater; 2012 Sep; 13():14-24. PubMed ID: 22842272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Ingredient Proportions and After-Treatment of Laser Sintering Walnut Shell Composites.
    Yu Y; Guo Y; Jiang T; Li J; Jiang K; Zhang H
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29207485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process Study of Selective Laser Sintering of PS/GF/HGM Composites.
    Liu L; Zhu S; Zhang Y; Ma S; Wu S; Wei B; Yang G
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Laser Power and Hatch Orientation on Final Properties of PA12 Parts Produced by Selective Laser Sintering.
    El Magri A; Bencaid SE; Vanaei HR; Vaudreuil S
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development.
    Hao L; Savalani MM; Zhang Y; Tanner KE; Harris RA
    Proc Inst Mech Eng H; 2006 May; 220(4):521-31. PubMed ID: 16808068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromechanical Modeling for Tensile Properties of Wood Plastic Composites: Use of Pruned Waste from Pecan Orchards as Sustainable Material for Reinforcement of Thermoplastic Composite.
    Díaz-Mendoza JM; Valles-Rosales DJ; Park YH; Sabo RC
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigation on Mechanical Characterization of Epoxy-E-Glass Fiber-Particulate Reinforced Hybrid Composites.
    Mohammed R; Badruddin IA; Shaik AS; Kamangar S; Khan AA
    ACS Omega; 2024 Jun; 9(23):24761-24773. PubMed ID: 38882091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Roughness and Grain Size Variation When 3D Printing Polyamide 11 Parts Using Selective Laser Sintering.
    Tonello R; Conradsen K; Pedersen DB; Frisvad JR
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.