These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39000891)

  • 1. DriveLLaVA: Human-Level Behavior Decisions via Vision Language Model.
    Zhao R; Yuan Q; Li J; Fan Y; Li Y; Gao F
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating visual large language model and reasoning chain for driver behavior analysis and risk assessment.
    Zhang K; Wang S; Jia N; Zhao L; Han C; Li L
    Accid Anal Prev; 2024 Apr; 198():107497. PubMed ID: 38330547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles.
    Mechernene A; Judalet V; Chaibet A; Boukhnifer M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BioInstruct: instruction tuning of large language models for biomedical natural language processing.
    Tran H; Yang Z; Yao Z; Yu H
    J Am Med Inform Assoc; 2024 Sep; 31(9):1821-1832. PubMed ID: 38833265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Law compliance decision making for autonomous vehicles on highways.
    Ma X; Song L; Zhao C; Wu S; Yu W; Wang W; Yang L; Wang H
    Accid Anal Prev; 2024 Sep; 204():107620. PubMed ID: 38823082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on obstacle avoidance optimization and path planning of autonomous vehicles based on attention mechanism combined with multimodal information decision-making thoughts of robots.
    Wu X; Wang G; Shen N
    Front Neurorobot; 2023; 17():1269447. PubMed ID: 37811356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lane Following Method Based on Improved DDPG Algorithm.
    He R; Lv H; Zhang S; Zhang D; Zhang H
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual attention outperforms visual-perceptual parameters required by law as an indicator of on-road driving performance.
    Grundler W; Strasburger H
    PLoS One; 2020; 15(8):e0236147. PubMed ID: 32797082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-like Decision Making for Autonomous Vehicles at the Intersection Using Inverse Reinforcement Learning.
    Wu Z; Qu F; Yang L; Gong J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-Based Hierarchical Decision-Making Framework for Automatic Driving in Incompletely Connected Traffic Scenarios.
    Yang F; Li X; Liu Q; Li X; Li Z
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on quantum cognition in autonomous driving.
    Song Q; Wang W; Fu W; Sun Y; Wang D; Gao Z
    Sci Rep; 2022 Jan; 12(1):300. PubMed ID: 34997146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Do Autonomous Vehicles Decide?
    Malik S; Khan MA; El-Sayed H; Khan J; Ullah O
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collaborative driving style classification method enabled by majority voting ensemble learning for enhancing classification performance.
    Guo Y; Wang X; Huang Y; Xu L
    PLoS One; 2021; 16(7):e0254047. PubMed ID: 34280214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum decision making in automatic driving.
    Song Q; Fu W; Wang W; Sun Y; Wang D; Zhou J
    Sci Rep; 2022 Jun; 12(1):11042. PubMed ID: 35773460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator.
    Gutiérrez-Moreno R; Barea R; López-Guillén E; Araluce J; Bergasa LM
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Social behavior for autonomous vehicles.
    Schwarting W; Pierson A; Alonso-Mora J; Karaman S; Rus D
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24972-24978. PubMed ID: 31757853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automatic driving trajectory planning approach in complex traffic scenarios based on integrated driver style inference and deep reinforcement learning.
    Liu Y; Diao S
    PLoS One; 2024; 19(1):e0297192. PubMed ID: 38271371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving.
    Large DR; Clark L; Quandt A; Burnett G; Skrypchuk L
    Appl Ergon; 2017 Sep; 63():53-61. PubMed ID: 28502406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driving and dementia: a clinical update for mental health professionals.
    Allan CL; Behrman S; Baruch N; Ebmeier KP
    Evid Based Ment Health; 2016 Nov; 19(4):110-113. PubMed ID: 27765792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.