These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39000911)

  • 1. Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings.
    Zhang C; Zeng M; Fan J; Li X
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network.
    Song L; Wu J; Wang L; Chen G; Shi Y; Liu Z
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Contact Fatigue Performance Degradation Trends Based on Multi-Domain Features and Temporal Convolutional Networks.
    Liu Y; Liu Y; Yang Y
    Entropy (Basel); 2023 Sep; 25(9):. PubMed ID: 37761615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification.
    Yang J; Peng Y; Xie J; Wang P
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A life prediction method based on MDFF and DITCN-ABiGRU mixed network model.
    Xu W; Shen Y; Jing L; Sun X
    Heliyon; 2024 Jan; 10(2):e24299. PubMed ID: 38268821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling Bearing Remaining Useful Life Prediction Based on CNN-VAE-MBiLSTM.
    Yang L; Jiang Y; Zeng K; Peng T
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model.
    Yan M; Wang X; Wang B; Chang M; Muhammad I
    ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint optimization of degradation assessment and remaining useful life prediction for bearings with temporal convolutional auto-encoder.
    Ding Y; Jia M; Zhao X; Yan X; Lee CG
    ISA Trans; 2024 Mar; 146():451-462. PubMed ID: 38320915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remaining useful life prognostics of bearings based on convolution attention networks and enhanced transformer.
    Sun N; Tang J; Ye X; Zhang C; Zhu S; Wang S; Sun Y
    Heliyon; 2024 Oct; 10(19):e38317. PubMed ID: 39416821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A knowledge-data integration framework for rolling element bearing RUL prediction across its life cycle.
    Yang L; Li T; Dong Y; Duan R; Liao Y
    ISA Trans; 2024 Sep; 152():331-357. PubMed ID: 38987043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Method for Remaining Useful Life Prediction of Roller Bearings Involving the Discrepancy and Similarity of Degradation Trajectories.
    Luo H; Bo L; Liu X; Zhang H
    Comput Intell Neurosci; 2021; 2021():2500997. PubMed ID: 34899887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remaining Useful Life Prognostics of Bearings Based on a Novel Spatial Graph-Temporal Convolution Network.
    Li P; Liu X; Yang Y
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remaining Useful Life Prediction Model for Rolling Bearings Based on MFPE-MACNN.
    Wang Y; Wang J; Zhang S; Xu D; Ge J
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-scale Permutation Entropy and ISSA-LSTM.
    Wang H; Zhang X; Ren M; Xu T; Lu C; Zhao Z
    Entropy (Basel); 2023 Oct; 25(11):. PubMed ID: 37998169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM.
    Huang G; Li H; Ou J; Zhang Y; Zhang M
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multi-Featured Factor Analysis and Dynamic Window Rectification Method for Remaining Useful Life Prognosis of Rolling Bearings.
    Peng C; Zhao Y; Li C; Tang Z; Gui W
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning.
    Wang Y; Li Y; Lu H; Wang D
    Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39283188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin.
    Zhang R; Zeng Z; Li Y; Liu J; Wang Z
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis.
    Hotait H; Chiementin X; Rasolofondraibe L
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.