These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39001115)

  • 1. Deep Learning-Based Dynamic Region of Interest Autofocus Method for Grayscale Image.
    Wang Y; Wu C; Gao Y; Liu H
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-precision microscopic autofocus with a single natural image.
    Hua Z; Zhang X; Tu D
    Opt Express; 2023 Dec; 31(26):43372-43389. PubMed ID: 38178432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based single-shot autofocus method for digital microscopy.
    Liao J; Chen X; Ding G; Dong P; Ye H; Wang H; Zhang Y; Yao J
    Biomed Opt Express; 2022 Jan; 13(1):314-327. PubMed ID: 35154873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Edge-Based Selection Method for Improving Regions-of-Interest Localizations Obtained Using Multiple Deep Learning Object-Detection Models in Breast Ultrasound Images.
    Daoud MI; Al-Ali A; Alazrai R; Al-Najar MS; Alsaify BA; Ali MZ; Alouneh S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformable motion compensation in interventional cone-beam CT with a context-aware learned autofocus metric.
    Huang H; Liu Y; Siewerdsen JH; Lu A; Hu Y; Zbijewski W; Unberath M; Weiss CR; Sisniega A
    Med Phys; 2024 Jun; 51(6):4158-4180. PubMed ID: 38733602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral prediction and intersection calculation autofocus method for automated microscopy.
    Wu ZM; Wang DH; Zhou F
    J Microsc; 2012 Dec; 248(3):271-80. PubMed ID: 23140376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autofocus methods based on laser illumination.
    Hua Z; Zhang X; Tu D
    Opt Express; 2023 Aug; 31(18):29465-29479. PubMed ID: 37710746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bionic vision autofocus method based on a liquid lens.
    Liu Z; Hong H; Gan Z; Xing K
    Appl Opt; 2022 Sep; 61(26):7692-7705. PubMed ID: 36256370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT.
    Zheng Q; Saponara S; Tian X; Yu Z; Elhanashi A; Yu R
    Cogn Neurodyn; 2024 Apr; 18(2):659-671. PubMed ID: 38699610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Stage Adaptive Spline Autofocus (MASA) with a Learned Metric for Deformable Motion Compensation in Interventional Cone-Beam CT.
    Huang H; Siewerdsen JH; Lu A; Hu Y; Zbijewski W; Unberath M; Weiss CR; Sisniega A
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12463():. PubMed ID: 37937146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based autofocus method enhances image quality in light-sheet fluorescence microscopy.
    Li C; Moatti A; Zhang X; Troy Ghashghaei H; Greenabum A
    Biomed Opt Express; 2021 Aug; 12(8):5214-5226. PubMed ID: 34513252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Region sampling for robust and rapid autofocus in microscope.
    Gu CC; Wu KJ; Hu J; Hao C; Guan XP
    Microsc Res Tech; 2015 May; 78(5):382-90. PubMed ID: 25754946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network.
    Zeng W; Luo J; Cheng J; Lu Y
    Med Phys; 2022 Aug; 49(8):5081-5092. PubMed ID: 35536111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autofocus of whole slide imaging based on convolution and recurrent neural networks.
    Xiang Y; He Z; Liu Q; Chen J; Liang Y
    Ultramicroscopy; 2021 Jan; 220():113146. PubMed ID: 33126105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-robustness autofocusing method in the microscope with laser-based arrayed spots.
    Wang Z; Zhang X; Chen X; Miao L; Kang K; Mo C
    Opt Express; 2024 Feb; 32(4):4902-4915. PubMed ID: 38439230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust deep learning optical autofocus system applied to automated multiwell plate single molecule localization microscopy.
    Lightley J; Görlitz F; Kumar S; Kalita R; Kolbeinsson A; Garcia E; Alexandrov Y; Bousgouni V; Wysoczanski R; Barnes P; Donnelly L; Bakal C; Dunsby C; Neil MAA; Flaxman S; French PMW
    J Microsc; 2022 Nov; 288(2):130-141. PubMed ID: 34089183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformable Motion Compensation for Intraprocedural Vascular Cone-beam CT with Sequential Projection Domain Targeting and Vessel-Enhancing Autofocus.
    Lu A; Huang H; Hu Y; Zbijewski W; Unberath M; Siewerdsen JH; Weiss CR; Sisniega A
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12466():. PubMed ID: 37937266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed telescope autofocus for UAV detection and tracking.
    Ojdanić D; Zelinskyi D; Naverschnigg C; Sinn A; Schitter G
    Opt Express; 2024 Feb; 32(5):7147-7157. PubMed ID: 38439403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meta grayscale adaptive network for 3D integrated renal structures segmentation.
    He Y; Yang G; Yang J; Ge R; Kong Y; Zhu X; Zhang S; Shao P; Shu H; Dillenseger JL; Coatrieux JL; Li S
    Med Image Anal; 2021 Jul; 71():102055. PubMed ID: 33866259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.