These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 39001122)

  • 1. A Robust Deep Feature Extraction Method for Human Activity Recognition Using a Wavelet Based Spectral Visualisation Technique.
    Ahmed N; Numan MOA; Kabir R; Islam MR; Watanobe Y
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable Sensor-Based Human Activity Recognition Method with Multi-Features Extracted from Hilbert-Huang Transform.
    Xu H; Liu J; Hu H; Zhang Y
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Analysis of Mother Wavelet Function Selection for Wearable Sensors-Based Human Activity Recognition.
    Nematallah H; Rajan S
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors.
    Ranieri CM; MacLeod S; Dragone M; Vargas PA; Romero RAF
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm.
    Sarkar A; Hossain SKS; Sarkar R
    Neural Comput Appl; 2023; 35(7):5165-5191. PubMed ID: 36311167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.
    Yen CT; Liao JX; Huang YK
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Effective Deep Learning Framework for Fall Detection: Model Development and Study Design.
    Zhang J; Li Z; Liu Y; Li J; Qiu H; Li M; Hou G; Zhou Z
    J Med Internet Res; 2024 Aug; 26():e56750. PubMed ID: 39102676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Sensor-Based Residual Multifeature Fusion Shrinkage Networks for Human Activity Recognition.
    Zeng F; Guo M; Tan L; Guo F; Liu X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CSI-Based Human Activity Recognition Using Deep Learning.
    Fard Moshiri P; Shahbazian R; Nabati M; Ghorashi SA
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the potential of pretrained CNNs and time-frequency methods for accurate epileptic EEG classification: a comparative study.
    Jamil M; Aziz MZ; Yu X
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38599183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors.
    Huang H; Zhou P; Li Y; Sun F
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved human activity recognition technique based on convolutional neural network.
    Raj R; Kos A
    Sci Rep; 2023 Dec; 13(1):22581. PubMed ID: 38114574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones.
    Ankita ; Rani S; Babbar H; Coleman S; Singh A; Aljahdali HM
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless body area sensor networks based human activity recognition using deep learning.
    El-Adawi E; Essa E; Handosa M; Elmougy S
    Sci Rep; 2024 Feb; 14(1):2702. PubMed ID: 38302545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.