These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 39001254)

  • 1. Hybrid Explainable Artificial Intelligence Models for Targeted Metabolomics Analysis of Diabetic Retinopathy.
    Yagin FH; Colak C; Algarni A; Gormez Y; Guldogan E; Ardigò LP
    Diagnostics (Basel); 2024 Jun; 14(13):. PubMed ID: 39001254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explainable Artificial Intelligence Paves the Way in Precision Diagnostics and Biomarker Discovery for the Subclass of Diabetic Retinopathy in Type 2 Diabetics.
    Yagin FH; Yasar S; Gormez Y; Yagin B; Pinar A; Alkhateeb A; Ardigò LP
    Metabolites; 2023 Dec; 13(12):. PubMed ID: 38132885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum Untargeted Metabolomics Reveal Potential Biomarkers of Progression of Diabetic Retinopathy in Asians.
    Wang Z; Tang J; Jin E; Zhong Y; Zhang L; Han X; Liu J; Cheng Y; Hou J; Shi X; Qi H; Qian T; Yuan L; Hou X; Yin H; Liang J; Zhao M; Huang L; Qu J
    Front Mol Biosci; 2022; 9():871291. PubMed ID: 35755823
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolomic comparison followed by cross-validation of enzyme-linked immunosorbent assay to reveal potential biomarkers of diabetic retinopathy in Chinese with type 2 diabetes.
    Wang Z; Tang J; Jin E; Ren C; Li S; Zhang L; Zhong Y; Cao Y; Wang J; Zhou W; Zhao M; Huang L; Qu J
    Front Endocrinol (Lausanne); 2022; 13():986303. PubMed ID: 36157454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Feasibility Study of Diabetic Retinopathy Detection in Type II Diabetic Patients Based on Explainable Artificial Intelligence.
    Lalithadevi B; Krishnaveni S; Gnanadurai JSC
    J Med Syst; 2023 Aug; 47(1):85. PubMed ID: 37552340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients.
    Yun JH; Kim JM; Jeon HJ; Oh T; Choi HJ; Kim BJ
    PLoS One; 2020; 15(10):e0241365. PubMed ID: 33119699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azelaic acid and guanosine in tears improve discrimination of proliferative from non-proliferative diabetic retinopathy in type-2 diabetes patients: A tear metabolomics study.
    Wen X; Ng TK; Liu Q; Wu Z; Zhang G; Zhang M
    Heliyon; 2023 May; 9(5):e16109. PubMed ID: 37305454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serum metabolomic profiles and semaphorin-3A as biomarkers of diabetic retinopathy progression.
    Mokhtar ER; Mahmoud DA; Ebrahim GE; Al Anany MG; Seliem N; Hassan MM
    Egypt J Immunol; 2023 Apr; 30(2):83-98. PubMed ID: 37031410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explainable artificial intelligence (XAI) for predicting the need for intubation in methanol-poisoned patients: a study comparing deep and machine learning models.
    Moulaei K; Afrash MR; Parvin M; Shadnia S; Rahimi M; Mostafazadeh B; Evini PET; Sabet B; Vahabi SM; Soheili A; Fathy M; Kazemi A; Khani S; Mortazavi SM; Hosseini SM
    Sci Rep; 2024 Jul; 14(1):15751. PubMed ID: 38977750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explainable Artificial Intelligence in Quantifying Breast Cancer Factors: Saudi Arabia Context.
    Alelyani T; Alshammari MM; Almuhanna A; Asan O
    Healthcare (Basel); 2024 May; 12(10):. PubMed ID: 38786433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the risk of diabetic retinopathy using explainable machine learning algorithms.
    Islam MM; Rahman MJ; Rabby MS; Alam MJ; Pollob SMAI; Ahmed NAMF; Tawabunnahar M; Roy DC; Shin J; Maniruzzaman M
    Diabetes Metab Syndr; 2023 Dec; 17(12):102919. PubMed ID: 38091881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy.
    Perais J; Agarwal R; Evans JR; Loveman E; Colquitt JL; Owens D; Hogg RE; Lawrenson JG; Takwoingi Y; Lois N
    Cochrane Database Syst Rev; 2023 Feb; 2(2):CD013775. PubMed ID: 36815723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of serum NO, TNF-alpha, IL-1beta, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus.
    Doganay S; Evereklioglu C; Er H; Türköz Y; Sevinç A; Mehmet N; Savli H
    Eye (Lond); 2002 Mar; 16(2):163-70. PubMed ID: 11988817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI.
    Kibria HB; Nahiduzzaman M; Goni MOF; Ahsan M; Haider J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platelet Metabolites as Candidate Biomarkers in Sepsis Diagnosis and Management Using the Proposed Explainable Artificial Intelligence Approach.
    Yagin FH; Aygun U; Algarni A; Colak C; Al-Hashem F; Ardigò LP
    J Clin Med; 2024 Aug; 13(17):. PubMed ID: 39274215
    [No Abstract]   [Full Text] [Related]  

  • 16. Novel risk score model for non-proliferative diabetic retinopathy based on untargeted metabolomics of venous blood.
    Wang X; Yang S; Yang G; Lin J; Zhao P; Ding J; Sun H; Meng T; Yang MM; Kang L; Liang Z
    Front Endocrinol (Lausanne); 2023; 14():1180415. PubMed ID: 37670880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence of diabetic retinopathy, proliferative diabetic retinopathy and non-proliferative diabetic retinopathy in Asian T2DM patients: a systematic review and Meta-analysis.
    Yang QH; Zhang Y; Zhang XM; Li XR
    Int J Ophthalmol; 2019; 12(2):302-311. PubMed ID: 30809489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Importance of Close Follow-Up in Patients with Early-Grade Diabetic Retinopathy: A Taiwan Population-Based Study Grading via Deep Learning Model.
    Lee CC; Hsing SC; Lin YT; Lin C; Chen JT; Chen YH; Fang WH
    Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and External Validation of Machine Learning Models for Diabetic Microvascular Complications: Cross-Sectional Study With Metabolites.
    He F; Ng Yin Ling C; Nusinovici S; Cheng CY; Wong TY; Li J; Sabanayagam C
    J Med Internet Res; 2024 Mar; 26():e41065. PubMed ID: 38546730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explainable artificial intelligence for microbiome data analysis in colorectal cancer biomarker identification.
    Novielli P; Romano D; Magarelli M; Bitonto PD; Diacono D; Chiatante A; Lopalco G; Sabella D; Venerito V; Filannino P; Bellotti R; De Angelis M; Iannone F; Tangaro S
    Front Microbiol; 2024; 15():1348974. PubMed ID: 38426064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.