These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39001608)
1. Complex Formation and Hydrolytic Processes of Protected Peptides Containing the -SXH- Motif in the Presence of Nickel(II) Ion. Sándor B; Grenács Á; Nagy L; Hollóczki O; Várnagy K Chembiochem; 2024 Oct; 25(20):e202400475. PubMed ID: 39001608 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics and structural characterization of the nickel(II) and zinc(II) complexes of various peptide fragments of tau protein. Balogh BD; Szunyog G; Lukács M; Szakács B; Sóvágó I; Várnagy K Dalton Trans; 2021 Oct; 50(40):14411-14420. PubMed ID: 34569575 [TBL] [Abstract][Full Text] [Related]
3. Sequence-specific Ni(II)-dependent peptide bond hydrolysis in a peptide containing threonine and histidine residues. Krezel A; Mylonas M; Kopera E; Bal W Acta Biochim Pol; 2006; 53(4):721-7. PubMed ID: 17117212 [TBL] [Abstract][Full Text] [Related]
4. Interactions of Nickel(II) with histones: interactions of Nickel(II) with CH3CO-Thr-Glu-Ser-His-His-Lys-NH2, a peptide modeling the potential metal binding site in the "C-Tail" region of histone H2A. Bal W; Lukszo J; Bialkowski K; Kasprzak KS Chem Res Toxicol; 1998 Sep; 11(9):1014-23. PubMed ID: 9760275 [TBL] [Abstract][Full Text] [Related]
5. Complex formation processes of terminally protected peptides containing two or three histidyl residues. Characterization of the mixed metal complexes of peptides. Rajković S; Kállay C; Serényi R; Malandrinos G; Hadjiliadis N; Sanna D; Sóvágó I Dalton Trans; 2008 Oct; (37):5059-71. PubMed ID: 18802621 [TBL] [Abstract][Full Text] [Related]
6. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: reaction conditions and molecular mechanism. Kopera E; Krezel A; Protas AM; Belczyk A; Bonna A; Wysłouch-Cieszyńska A; Poznański J; Bal W Inorg Chem; 2010 Jul; 49(14):6636-45. PubMed ID: 20550138 [TBL] [Abstract][Full Text] [Related]
7. Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein. Witkowska D; Valensin D; Rowinska-Zyrek M; Karafova A; Kamysz W; Kozlowski H J Inorg Biochem; 2012 Feb; 107(1):73-81. PubMed ID: 22178668 [TBL] [Abstract][Full Text] [Related]
8. Interactions of Ni(II) and Cu(II) ions with the hydrolysis products of the C-terminal -ESHH- motif of histone H2A model peptides. Association of the stability of the complexes formed with the cleavage of the -E-S- bond. Mylonas M; Plakatouras JC; Hadjiliadis N Dalton Trans; 2004 Dec; (24):4152-60. PubMed ID: 15573167 [TBL] [Abstract][Full Text] [Related]
9. Copper(II), nickel(II) and zinc(II) complexes of the N-terminal nonapeptide fragment of amyloid-β and its derivatives. Grenács Á; Sóvágó I J Inorg Biochem; 2014 Oct; 139():49-56. PubMed ID: 24973554 [TBL] [Abstract][Full Text] [Related]
10. Copper(II), Nickel(II) and Zinc(II) Complexes of Peptide Fragments of Tau Protein. Kastal Z; Balabán A; Vida S; Kállay C; Nagy L; Várnagy K; Sóvágó I Molecules; 2024 May; 29(10):. PubMed ID: 38792033 [TBL] [Abstract][Full Text] [Related]
12. Binary and ternary mixed metal complexes of terminally free peptides containing two different histidyl binding sites. Grenács A; Kaluha A; Kállay C; Jószai V; Sanna D; Sóvágó I J Inorg Biochem; 2013 Nov; 128():17-25. PubMed ID: 23911567 [TBL] [Abstract][Full Text] [Related]
13. Sequence-specific Cu(II)-dependent peptide bond hydrolysis: similarities and differences with the Ni(II)-dependent reaction. Belczyk-Ciesielska A; Zawisza IA; Mital M; Bonna A; Bal W Inorg Chem; 2014 May; 53(9):4639-46. PubMed ID: 24735221 [TBL] [Abstract][Full Text] [Related]
14. A comparative study on the nickel binding ability of peptides containing separate cysteinyl residues. Szunyog G; Laskai A; Szűcs D; Sóvágó I; Várnagy K Dalton Trans; 2019 Nov; 48(44):16800-16811. PubMed ID: 31687706 [TBL] [Abstract][Full Text] [Related]
15. The Cys-Xaa-His metal-binding motif: [N] versus [S] coordination and nickel-mediated formation of cysteinyl sulfinic acid. Van Horn JD; Bulaj G; Goldenberg DP; Burrows CJ J Biol Inorg Chem; 2003 Jul; 8(6):601-10. PubMed ID: 12827456 [TBL] [Abstract][Full Text] [Related]
16. Complex formation processes and metal ion catalyzed oxidation of model peptides related to the metal binding site of the human prion protein. Csire G; Turi I; Sóvágó I; Kárpáti E; Kállay C J Inorg Biochem; 2020 Feb; 203():110927. PubMed ID: 31810042 [TBL] [Abstract][Full Text] [Related]
17. The Role of Side Chains in the Fine-Tuning of the Metal-Binding Ability of Multihistidine Peptides. Székely E; Csire G; Balogh BD; Erdei JZ; Király JM; Kocsi J; Pinkóczy J; Várnagy K Molecules; 2022 May; 27(11):. PubMed ID: 35684373 [TBL] [Abstract][Full Text] [Related]
18. Dual catalytic role of the metal ion in nickel-assisted peptide bond hydrolysis. Podobas EI; Bonna A; Polkowska-Nowakowska A; Bal W J Inorg Biochem; 2014 Jul; 136():107-14. PubMed ID: 24726232 [TBL] [Abstract][Full Text] [Related]
19. Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions. Protas AM; Bonna A; Kopera E; Bal W J Inorg Biochem; 2011 Jan; 105(1):10-6. PubMed ID: 21134597 [TBL] [Abstract][Full Text] [Related]
20. Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of multihistidine peptide fragments of human prion protein. Jószai V; Turi I; Kállay C; Pappalardo G; Di Natale G; Rizzarelli E; Sóvágó I J Inorg Biochem; 2012 Jul; 112():17-24. PubMed ID: 22542592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]