These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Exposure to Short Photoperiod Regime Restores Spatial Cognition in Ventral Subicular Lesioned Rats: Potential Role of Hippocampal Plasticity, Glucocorticoid Receptors, and Neurogenesis. Subhadeep D; Srikumar BN; Shankaranarayana Rao BS; Kutty BM Mol Neurobiol; 2021 Sep; 58(9):4437-4459. PubMed ID: 34024004 [TBL] [Abstract][Full Text] [Related]
5. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits. Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572 [TBL] [Abstract][Full Text] [Related]
6. State-dependent effects of light-dark cycle on somatosensory and visual cortex EEG in rats. Yasuda T; Yasuda K; Brown RA; Krueger JM Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R1083-9. PubMed ID: 16183627 [TBL] [Abstract][Full Text] [Related]
7. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation. Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357 [TBL] [Abstract][Full Text] [Related]
8. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Wiater MF; Mukherjee S; Li AJ; Dinh TT; Rooney EM; Simasko SM; Ritter S Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1569-83. PubMed ID: 21880863 [TBL] [Abstract][Full Text] [Related]
9. Photoperiod alters duration and intensity of non-rapid eye movement sleep following immune challenge in Siberian hamsters (Phodopus sungorus). Ashley NT; Zhang N; Weil ZM; Magalang UJ; Nelson RJ Chronobiol Int; 2012 Jul; 29(6):683-92. PubMed ID: 22734569 [TBL] [Abstract][Full Text] [Related]
10. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. Villablanca JR J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255 [TBL] [Abstract][Full Text] [Related]
11. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1. Baracchi F; Opp MR Brain Behav Immun; 2008 Aug; 22(6):982-93. PubMed ID: 18329246 [TBL] [Abstract][Full Text] [Related]
12. Homeostatic sleep regulation in the absence of the circadian sleep-regulating component: effect of short light-dark cycles on sleep-wake stages and slow waves. Szalontai Ö; Tóth A; Pethő M; Keserű D; Hajnik T; Détári L BMC Neurosci; 2021 Feb; 22(1):13. PubMed ID: 33639837 [TBL] [Abstract][Full Text] [Related]
13. Wake-Promoting and EEG Spectral Effects of Modafinil After Acute or Chronic Administration in the R6/2 Mouse Model of Huntington's Disease. Vas S; Casey JM; Schneider WT; Kalmar L; Morton AJ Neurotherapeutics; 2020 Jul; 17(3):1075-1086. PubMed ID: 32297185 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of retinal degeneration on sleep and wakefulness responses to short light-dark cycles in albino mice. Hsiao FC; Liao YH; Tsai LL Neuroscience; 2013 Sep; 248():459-68. PubMed ID: 23811394 [TBL] [Abstract][Full Text] [Related]
15. Can absence seizures be predicted by vigilance states?: Advanced analysis of sleep-wake states and spike-wave discharges' occurrence in rats. Smyk MK; Sysoev IV; Sysoeva MV; van Luijtelaar G; Drinkenburg WH Epilepsy Behav; 2019 Jul; 96():200-209. PubMed ID: 31153123 [TBL] [Abstract][Full Text] [Related]
16. Waking and sleeping in the rat made obese through a high-fat hypercaloric diet. Luppi M; Cerri M; Martelli D; Tupone D; Del Vecchio F; Di Cristoforo A; Perez E; Zamboni G; Amici R Behav Brain Res; 2014 Jan; 258():145-52. PubMed ID: 24149066 [TBL] [Abstract][Full Text] [Related]
17. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness. Lancel M; van Riezen H; Glatt A Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989 [TBL] [Abstract][Full Text] [Related]
18. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase. Trachsel L; Tobler I; Borbély AA Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191 [TBL] [Abstract][Full Text] [Related]
19. Sleep disturbances in highly stress reactive mice: modeling endophenotypes of major depression. Fenzl T; Touma C; Romanowski CP; Ruschel J; Holsboer F; Landgraf R; Kimura M; Yassouridis A BMC Neurosci; 2011 Mar; 12():29. PubMed ID: 21435199 [TBL] [Abstract][Full Text] [Related]
20. The anterolateral projections of the medial basal hypothalamus affect sleep. Peterfi Z; Makara GB; Obál F; Krueger JM Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1228-38. PubMed ID: 19193940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]