These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 39001879)

  • 1. Mixed Conducting Polymers Alter Electron Transfer Thermodynamics to Boost Current Generation from Electroactive Microbes.
    Agee A; Pace G; Yang V; Segalman R; Furst AL
    J Am Chem Soc; 2024 Jul; 146(29):19728-19736. PubMed ID: 39001879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in electrochemically active biofilm of
    Jiang M; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):881-897. PubMed ID: 36994560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoliter scale electrochemistry of natural and engineered electroactive bacteria.
    Yates MD; Bird LJ; Eddie BJ; Onderko EL; Voigt CA; Glaven SM
    Bioelectrochemistry; 2021 Feb; 137():107644. PubMed ID: 32971484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Induced Patterning of Electroactive Bacterial Biofilms.
    Zhao F; Chavez MS; Naughton KL; Niman CM; Atkinson JT; Gralnick JA; El-Naggar MY; Boedicker JQ
    ACS Synth Biol; 2022 Jul; 11(7):2327-2338. PubMed ID: 35731987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system.
    TerAvest MA; Rosenbaum MA; Kotloski NJ; Gralnick JA; Angenent LT
    Biotechnol Bioeng; 2014 Apr; 111(4):692-9. PubMed ID: 24122485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis.
    Kotloski NJ; Gralnick JA
    mBio; 2013 Jan; 4(1):. PubMed ID: 23322638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial nanowires for bioenergy applications.
    Malvankar NS; Lovley DR
    Curr Opin Biotechnol; 2014 Jun; 27():88-95. PubMed ID: 24863901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging.
    Jiang X; Hu J; Fitzgerald LA; Biffinger JC; Xie P; Ringeisen BR; Lieber CM
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16806-10. PubMed ID: 20837546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron Storage in Electroactive Biofilms.
    Ter Heijne A; Pereira MA; Pereira J; Sleutels T
    Trends Biotechnol; 2021 Jan; 39(1):34-42. PubMed ID: 32646618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking of Shewanella oneidensis MR-1 biofilm formation of a microbial electrochemical system via differential pulse voltammetry.
    Choi S; Kim B; Chang IS
    Bioresour Technol; 2018 Apr; 254():357-361. PubMed ID: 29398289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromicrobiology.
    Lovley DR
    Annu Rev Microbiol; 2012; 66():391-409. PubMed ID: 22746334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
    Zhao J; Li F; Cao Y; Zhang X; Chen T; Song H; Wang Z
    Biotechnol Adv; 2021 Dec; 53():107682. PubMed ID: 33326817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst.
    Fapetu S; Keshavarz T; Clements M; Kyazze G
    Biotechnol Lett; 2016 Sep; 38(9):1465-73. PubMed ID: 27193895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Living Bioelectrochemical Composites.
    McCuskey SR; Su Y; Leifert D; Moreland AS; Bazan GC
    Adv Mater; 2020 Jun; 32(24):e1908178. PubMed ID: 32347632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1.
    Fowler GJ; Pereira-Medrano AG; Jaffe S; Pasternak G; Pham TK; Ledezma P; Hall ST; Ieropoulos IA; Wright PC
    Proteomics; 2016 Nov; 16(21):2764-2775. PubMed ID: 27599463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring electron and proton diffusion flux through three-dimensional, paper-based, variable biofilm and liquid media layers.
    Choi G; Choi S
    Analyst; 2015 Sep; 140(17):5901-7. PubMed ID: 26179156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1.
    Kouzuma A
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1572-1581. PubMed ID: 33998649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.