These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 39001926)

  • 1. Deep learning model based on endoscopic images predicting treatment response in locally advanced rectal cancer undergo neoadjuvant chemoradiotherapy: a multicenter study.
    Zhang J; Liu R; Wang X; Zhang S; Shao L; Liu J; Zhao J; Wang Q; Tian J; Lu Y
    J Cancer Res Clin Oncol; 2024 Jul; 150(7):350. PubMed ID: 39001926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI.
    Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS
    Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study.
    Feng L; Liu Z; Li C; Li Z; Lou X; Shao L; Wang Y; Huang Y; Chen H; Pang X; Liu S; He F; Zheng J; Meng X; Xie P; Yang G; Ding Y; Wei M; Yun J; Hung MC; Zhou W; Wahl DR; Lan P; Tian J; Wan X
    Lancet Digit Health; 2022 Jan; 4(1):e8-e17. PubMed ID: 34952679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Neoadjuvant Chemoradiotherapy Response in Rectal Cancer Using MR Images and Deep Learning Neural Networks.
    Cingoz E; Ertas G; Kaval G; Azamat S; Karaman S; Kulle CB; Berker N; Cingöz M; Dagoglu Sakin N; Comert RG; Buyuk M; Kartal MGD
    Curr Med Imaging; 2024; 20(1):e15734056309748. PubMed ID: 38874041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Longitudinal MRI-Based Artificial Intelligence System to Predict Pathological Complete Response After Neoadjuvant Therapy in Rectal Cancer: A Multicenter Validation Study.
    Ke J; Jin C; Tang J; Cao H; He S; Ding P; Jiang X; Zhao H; Cao W; Meng X; Gao F; Lan P; Li R; Wu X
    Dis Colon Rectum; 2023 Dec; 66(12):e1195-e1206. PubMed ID: 37682775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer.
    Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS
    Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images.
    Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW
    Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H
    Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning of endoscopic features for the assessment of neoadjuvant therapy response in locally advanced rectal cancer.
    Wang A; Zhou J; Wang G; Zhang B; Xin H; Zhou H
    Asian J Surg; 2023 Sep; 46(9):3568-3574. PubMed ID: 37062601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging.
    Jang BS; Lim YJ; Song C; Jeon SH; Lee KW; Kang SB; Lee YJ; Kim JS
    Radiother Oncol; 2021 Aug; 161():183-190. PubMed ID: 34139211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based Model for Identifying Tumors in Endoscopic Images From Patients With Locally Advanced Rectal Cancer Treated With Total Neoadjuvant Therapy.
    Thompson HM; Kim JK; Jimenez-Rodriguez RM; Garcia-Aguilar J; Veeraraghavan H
    Dis Colon Rectum; 2023 Mar; 66(3):383-391. PubMed ID: 35358109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics].
    Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172
    [No Abstract]   [Full Text] [Related]  

  • 13. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer.
    Ferrari R; Mancini-Terracciano C; Voena C; Rengo M; Zerunian M; Ciardiello A; Grasso S; Mare' V; Paramatti R; Russomando A; Santacesaria R; Satta A; Solfaroli Camillocci E; Faccini R; Laghi A
    Eur J Radiol; 2019 Sep; 118():1-9. PubMed ID: 31439226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study.
    Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D
    Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention mechanism based multi-sequence MRI fusion improves prediction of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Zhou X; Yu Y; Feng Y; Ding G; Liu P; Liu L; Ren W; Zhu Y; Cao W
    Radiat Oncol; 2023 Oct; 18(1):175. PubMed ID: 37891611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of deep learning on endoscopic images to assess the response of rectal cancer after chemoradiation.
    Haak HE; Gao X; Maas M; Waktola S; Benson S; Beets-Tan RGH; Beets GL; van Leerdam M; Melenhorst J
    Surg Endosc; 2022 May; 36(5):3592-3600. PubMed ID: 34642794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis on efficacy and safety of total neoadjuvant therapy in patients with locally advanced rectal cancer with high risk factors].
    Ouyang GL; Meng WJ; Shu P; Deng XB; Wu B; Jiang D; Zhuang H; Shen YL; Zhou ZG; Wang ZQ; Wang X
    Zhonghua Wei Chang Wai Ke Za Zhi; 2019 Apr; 22(4):349-356. PubMed ID: 31054549
    [No Abstract]   [Full Text] [Related]  

  • 18. Deep learning radiomics-based prediction of distant metastasis in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A multicentre study.
    Liu X; Zhang D; Liu Z; Li Z; Xie P; Sun K; Wei W; Dai W; Tang Z; Ding Y; Cai G; Tong T; Meng X; Tian J
    EBioMedicine; 2021 Jul; 69():103442. PubMed ID: 34157487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: a systematic review and meta-analysis.
    He J; Wang SX; Liu P
    Br J Radiol; 2024 Jun; 97(1159):1243-1254. PubMed ID: 38730550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer with 3T MRI.
    Bellini D; Carbone I; Rengo M; Vicini S; Panvini N; Caruso D; Iannicelli E; Tombolini V; Laghi A
    Tomography; 2022 Aug; 8(4):2059-2072. PubMed ID: 36006071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.