These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data. Dai X; Erkkilä T; Yli-Harja O; Lähdesmäki H BMC Bioinformatics; 2009 May; 10():165. PubMed ID: 19480678 [TBL] [Abstract][Full Text] [Related]
3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
4. caBIG VISDA: modeling, visualization, and discovery for cluster analysis of genomic data. Zhu Y; Li H; Miller DJ; Wang Z; Xuan J; Clarke R; Hoffman EP; Wang Y BMC Bioinformatics; 2008 Sep; 9():383. PubMed ID: 18801195 [TBL] [Abstract][Full Text] [Related]
5. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions. Tokuda T; Yoshimoto J; Shimizu Y; Okada G; Takamura M; Okamoto Y; Yamawaki S; Doya K PLoS One; 2017; 12(10):e0186566. PubMed ID: 29049392 [TBL] [Abstract][Full Text] [Related]
6. Clustering high-dimensional data via feature selection. Liu T; Lu Y; Zhu B; Zhao H Biometrics; 2023 Jun; 79(2):940-950. PubMed ID: 35338489 [TBL] [Abstract][Full Text] [Related]
7. Subject level clustering using a negative binomial model for small transcriptomic studies. Li Q; Noel-MacDonnell JR; Koestler DC; Goode EL; Fridley BL BMC Bioinformatics; 2018 Dec; 19(1):474. PubMed ID: 30541426 [TBL] [Abstract][Full Text] [Related]
8. Efficient Clustering for Continuous Occupancy Mapping Using a Mixture of Gaussian Processes. Kim S; Kim J Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146179 [TBL] [Abstract][Full Text] [Related]
9. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Mo Q; Shen R; Guo C; Vannucci M; Chan KS; Hilsenbeck SG Biostatistics; 2018 Jan; 19(1):71-86. PubMed ID: 28541380 [TBL] [Abstract][Full Text] [Related]
10. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data. Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197 [TBL] [Abstract][Full Text] [Related]
11. Clustering on hierarchical heterogeneous data with prior pairwise relationships. Han W; Zhang S; Gao H; Bu D BMC Bioinformatics; 2024 Jan; 25(1):40. PubMed ID: 38262930 [TBL] [Abstract][Full Text] [Related]
12. Clustering of cancer data based on Stiefel manifold for multiple views. Tian J; Zhao J; Zheng C BMC Bioinformatics; 2021 May; 22(1):268. PubMed ID: 34034643 [TBL] [Abstract][Full Text] [Related]
13. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data. Lemsara A; Ouadfel S; Fröhlich H BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344 [TBL] [Abstract][Full Text] [Related]
14. Clustering ensembles: models of consensus and weak partitions. Topchy A; Jain AK; Punch W IEEE Trans Pattern Anal Mach Intell; 2005 Dec; 27(12):1866-81. PubMed ID: 16355656 [TBL] [Abstract][Full Text] [Related]
15. Bayesian approaches to variable selection in mixture models with application to disease clustering. Lu Z; Lou W J Appl Stat; 2023; 50(2):387-407. PubMed ID: 36698543 [TBL] [Abstract][Full Text] [Related]
16. The cluster graphical lasso for improved estimation of Gaussian graphical models. Tan KM; Witten D; Shojaie A Comput Stat Data Anal; 2015 May; 85():23-36. PubMed ID: 25642008 [TBL] [Abstract][Full Text] [Related]
17. SPARSE INTEGRATIVE CLUSTERING OF MULTIPLE OMICS DATA SETS. Shen R; Wang S; Mo Q Ann Appl Stat; 2013 Apr; 7(1):269-294. PubMed ID: 24587839 [TBL] [Abstract][Full Text] [Related]
18. Consensus clustering with missing labels (ccml): a consensus clustering tool for multi-omics integrative prediction in cohorts with unequal sample coverage. Li CX; Chen H; Zounemat-Kermani N; Adcock IM; Sköld CM; Zhou M; Wheelock ÅM; Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38205966 [TBL] [Abstract][Full Text] [Related]
19. Integrating multidimensional data for clustering analysis with applications to cancer patient data. Park S; Xu H; Zhao H J Am Stat Assoc; 2021; 116(533):14-26. PubMed ID: 36339813 [TBL] [Abstract][Full Text] [Related]