These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39002361)

  • 1. Ultrasmall Pd nanoparticles supported on a metal-organic framework DUT-67-PZDC for enhanced formic acid dehydrogenation.
    Zhou C; Zhang R; Hu J; Yao C; Liu Z; Duan A; Wang X
    J Colloid Interface Sci; 2024 Nov; 673():997-1006. PubMed ID: 39002361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacing with Fe-N-C Sites Boosts the Formic Acid Dehydrogenation of Palladium Nanoparticles.
    Zhong S; Yang X; Chen L; Tsumori N; Taguchi N; Xu Q
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46749-46755. PubMed ID: 34581556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid.
    Ding Y; Peng W; Zhang L; Xia J; Feng G; Lu ZH
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):879-887. PubMed ID: 36306599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of palladium silver nanoparticles on NH
    Han J; Zhang Z; Hao Z; Li G; Liu T
    J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced catalytic activity over palladium supported on ZrO
    Wang T; Li F; An H; Xue W; Wang Y
    RSC Adv; 2019 Jan; 9(6):3359-3366. PubMed ID: 35518976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH)
    Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH
    Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution.
    Zhang S; Jiang B; Jiang K; Cai WB
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports.
    Feng Z; Chen X; Bai X
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36172-36185. PubMed ID: 32556981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amine-functionalized Schiff base covalent organic frameworks supported PdAuIr nanoparticles as high-performance catalysts for formic acid dehydrogenation and hexavalent chromium reduction.
    Guo X; Di X; Tang T; Shi Y; Liu D; Wang W; Liu Z; Ji X; Shao X
    J Colloid Interface Sci; 2024 Mar; 658():362-372. PubMed ID: 38113545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature.
    Wu L; Ni B; Chen R; Shi C; Sun P; Chen T
    Nanoscale Adv; 2019 Nov; 1(11):4415-4421. PubMed ID: 36134405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.
    Gu X; Lu ZH; Jiang HL; Akita T; Xu Q
    J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid.
    Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yolk-shell silica dioxide spheres @ metal-organic framework immobilized Ni/Mo nanoparticles as an effective catalyst for formic acid dehydrogenation at low temperature.
    Prabu S; Chiang KY
    J Colloid Interface Sci; 2021 Dec; 604():584-595. PubMed ID: 34280756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L; Chen X; Zhang C; Zhang G; Liu Z
    ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilizing Extremely Catalytically Active Palladium Nanoparticles to Carbon Nanospheres: A Weakly-Capping Growth Approach.
    Zhu QL; Tsumori N; Xu Q
    J Am Chem Soc; 2015 Sep; 137(36):11743-8. PubMed ID: 26323169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Theoretical Studies of Ultrafine Pd-Based Biochar Catalyst for Dehydrogenation of Formic Acid and Application of In Situ Hydrogenation.
    Zou L; Liu Q; Zhu D; Huang Y; Mao Y; Luo X; Liang Z
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17282-17295. PubMed ID: 35389607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Investigations of the Transition between Framework Topologies in Ce/Zr-MOFs.
    Jacobsen J; Reinsch H; Stock N
    Inorg Chem; 2018 Oct; 57(20):12820-12826. PubMed ID: 30256108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential-Rate Correlations of Supported Palladium-Based Catalysts for Aqueous Formic Acid Dehydrogenation.
    Qi X; Obata K; Yui Y; Honma T; Lu X; Ibe M; Takanabe K
    J Am Chem Soc; 2024 Apr; 146(13):9191-9204. PubMed ID: 38500345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.