These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 39003020)

  • 1. Control of cyanobacterial growth with potassium; implications for bloom control in nuclear storage ponds.
    Zhang K; Foster L; Boothman C; Bassil NM; Pittman JK; Lloyd JR
    Harmful Algae; 2024 Aug; 137():102654. PubMed ID: 39003020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial bloom formation in a high pH spent nuclear fuel pond.
    Foster L; Boothman C; Ruiz-Lopez S; Boshoff G; Jenkinson P; Sigee D; Pittman JK; Morris K; Lloyd JR
    Sci Total Environ; 2020 Jun; 720():137515. PubMed ID: 32325573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pond.
    MeGraw VE; Brown AR; Boothman C; Goodacre R; Morris K; Sigee D; Anderson L; Lloyd JR
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interplay between Cs and K in Pseudanabaena catenata; from microbial bloom control strategies to bioremediation options for radioactive waters.
    Zhang K; Foster L; Buchanan D; Coker VS; Pittman JK; Lloyd JR
    J Hazard Mater; 2023 Mar; 445():130556. PubMed ID: 37055967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation Tolerance of
    Foster L; Muhamadali H; Boothman C; Sigee D; Pittman JK; Goodacre R; Morris K; Lloyd JR
    Front Microbiol; 2020; 11():515. PubMed ID: 32318035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of algal rich microbial blooms in the Sellafield Pile Fuel Storage Pond and the application of ultrasonic treatment to control the formation of blooms.
    Foster L; Boothman C; Harrison S; Jenkinson P; Pittman JK; Lloyd JR
    Front Microbiol; 2023; 14():1261801. PubMed ID: 37860139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of humic acid & bacterial exudates on sorption-desorption interactions of
    Ashworth H; Abrahamsen-Mills L; Bryan N; Foster L; Lloyd JR; Kellet S; Heath S
    Environ Sci Process Impacts; 2018 Jun; 20(6):956-964. PubMed ID: 29774347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples.
    Waajen GW; Faassen EJ; Lürling M
    Environ Sci Pollut Res Int; 2014; 21(16):9983-94. PubMed ID: 24798921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Stable Hydrogen-Driven Microbiome in a Highly Radioactive Storage Facility on the Sellafield Site.
    Ruiz-Lopez S; Foster L; Boothman C; Cole N; Morris K; Lloyd JR
    Front Microbiol; 2020; 11():587556. PubMed ID: 33329459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production.
    Sharma R; Palled V; Sharma-Shivappa RR; Osborne J
    Appl Biochem Biotechnol; 2013 Feb; 169(3):761-72. PubMed ID: 23274726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins.
    Lürling M; van Oosterhout F; Faassen E
    Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28208670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophysical and Hydrochemical Controls of Cyanobacterial Blooms in Coursey Pond, Delaware (USA).
    Andres AS; Main CR; Pettay DT; Ullman WJ
    J Environ Qual; 2019 Jan; 48(1):73-82. PubMed ID: 30640342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of a handheld spectroradiometer for the near real-time measurement of cyanobacteria for bloom management purposes.
    Bowling LC; Shaikh M; Brayan J; Malthus T
    Environ Monit Assess; 2017 Sep; 189(10):495. PubMed ID: 28887739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wastewater discharge with phytoplankton may favor cyanobacterial development in the main drinking water supply river in Uruguay.
    Olano H; Martigani F; Somma A; Aubriot L
    Environ Monit Assess; 2019 Feb; 191(3):146. PubMed ID: 30737570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An environmentally friendly approach for mitigating cyanobacterial bloom and their toxins in hypereutrophic ponds: Potentiality of a newly developed granular hydrogen peroxide-based compound.
    Sinha AK; Eggleton MA; Lochmann RT
    Sci Total Environ; 2018 Oct; 637-638():524-537. PubMed ID: 29754087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do high concentrations of microcystin prevent Daphnia control of phytoplankton?
    Chislock MF; Sarnelle O; Jernigan LM; Wilson AE
    Water Res; 2013 Apr; 47(6):1961-70. PubMed ID: 23395484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium Salts Inhibit Growth of the Cyanobacteria Microcystis spp. in Pond Water and Defined Media: Implications for Control of Microcystin-Producing Aquatic Blooms.
    Parker DL; Kumar HD; Rai LC; Singh JB
    Appl Environ Microbiol; 1997 Jun; 63(6):2324-9. PubMed ID: 16535629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The management of undesirable cyanobacteria blooms in channel catfish ponds using a constructed wetland: Contribution to the control of off-flavor occurrences.
    Zhong F; Gao Y; Yu T; Zhang Y; Xu D; Xiao E; He F; Zhou Q; Wu Z
    Water Res; 2011 Dec; 45(19):6479-88. PubMed ID: 22000715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing.
    Gorham T; Jia Y; Shum CK; Lee J
    Harmful Algae; 2017 Jun; 66():13-19. PubMed ID: 28602249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomanipulation of hypereutrophic ponds: when it works and why it fails.
    Peretyatko A; Teissier S; De Backer S; Triest L
    Environ Monit Assess; 2012 Mar; 184(3):1517-31. PubMed ID: 21523381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.