These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 39003059)

  • 1. The mechanisms of pH regulation on promoting volatile fatty acids production from kitchen waste.
    Liu F; Wang T; Feng L; Chen Y
    J Environ Sci (China); 2025 Jan; 147():414-423. PubMed ID: 39003059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste.
    Slezak R; Grzelak J; Krzystek L; Ledakowicz S
    Environ Technol; 2021 Nov; 42(27):4269-4278. PubMed ID: 32255721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of seasonal variation on volatile fatty acids production of food waste anaerobic fermentation.
    Qin W; Han S; Meng F; Chen K; Gao Y; Li J; Lin L; Hu E; Jiang J
    Sci Total Environ; 2024 Feb; 912():168764. PubMed ID: 38000740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time.
    Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z
    Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH.
    Yu P; Tu W; Wu M; Zhang Z; Wang H
    Bioresour Technol; 2021 Jul; 332():125116. PubMed ID: 33857863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses.
    Wu QL; Guo WQ; Zheng HS; Luo HC; Feng XC; Yin RL; Ren NQ
    Bioresour Technol; 2016 Sep; 216():653-60. PubMed ID: 27289056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of initial organic load of the kitchen waste on the production of VFA and H
    Slezak R; Grzelak J; Krzystek L; Ledakowicz S
    Waste Manag; 2017 Oct; 68():610-617. PubMed ID: 28642076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH.
    Feng L; Chen Y; Zheng X
    Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession.
    Xiao X; Hu H; Meng X; Huang Z; Feng Y; Gao Q; Ruan W
    Bioresour Technol; 2024 May; 399():130576. PubMed ID: 38479625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge.
    Zhao J; Wang D; Li X; Yang Q; Chen H; Zhong Y; Zeng G
    Water Res; 2015 Jul; 78():111-20. PubMed ID: 25935366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources.
    Li Y; Xu H; Hua D; Zhao B; Mu H; Jin F; Meng G; Fang X
    Sci Total Environ; 2020 Jan; 699():134226. PubMed ID: 31683212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge.
    Tao Z; Yang Q; Yao F; Huang X; Wu Y; Du M; Chen S; Liu X; Li X; Wang D
    Bioresour Technol; 2020 Feb; 297():122428. PubMed ID: 31786038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Co-fermentation of kitchen waste and excess sludge for organic acid production: a review].
    Gui X; Luo Y; Li Z; Nie M; Yang Y; Zhang C; Liu J
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):448-460. PubMed ID: 33645147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term alkaline volatile fatty acids production from waste streams: Impact of pH and dominance of Dysgonomonadaceae.
    Owusu-Agyeman I; Plaza E; Cetecioglu Z
    Bioresour Technol; 2022 Feb; 346():126621. PubMed ID: 34958905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of volatile fatty acids and H
    Slezak R; Grzelak J; Krzystek L; Ledakowicz S
    Environ Technol; 2020 Dec; 41(28):3767-3777. PubMed ID: 31084521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity.
    Hasan SD; Giongo C; Fiorese ML; Gomes SD; Ferrari TC; Savoldi TE
    Environ Technol; 2015; 36(20):2637-46. PubMed ID: 25885093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of volatile fatty acids from wastewater screenings using a leach-bed reactor.
    Cadavid-Rodríguez LS; Horan NJ
    Water Res; 2014 Sep; 60():242-249. PubMed ID: 24862954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis and acidification of waste activated sludge at different pHs.
    Chen Y; Jiang S; Yuan H; Zhou Q; Gu G
    Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge.
    Duan X; Wang X; Xie J; Feng L; Yan Y; Zhou Q
    Water Res; 2016 Nov; 105():209-217. PubMed ID: 27619497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation.
    Huang X; Xu Q; Wu Y; Wang D; Yang Q; Chen F; Wu Y; Pi Z; Chen Z; Li X; Zhong Q
    Bioresour Technol; 2019 Sep; 288():121598. PubMed ID: 31176944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.