These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 39003063)
21. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115 [TBL] [Abstract][Full Text] [Related]
22. How does the biochar-supported sulfidized nanoscale zero-valent iron affect the soil environment and microorganisms while remediating cadmium contaminated paddy soil? Xue W; Wen S; Chen X; Wang Y; Qian S; Wu Y; Ge R; Gao Y; Xu Y Environ Geochem Health; 2024 Jun; 46(7):222. PubMed ID: 38849580 [TBL] [Abstract][Full Text] [Related]
23. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966 [TBL] [Abstract][Full Text] [Related]
24. Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron. Hou S; Wu B; Peng D; Wang Z; Wang Y; Xu H Environ Pollut; 2019 Sep; 252(Pt A):553-561. PubMed ID: 31181500 [TBL] [Abstract][Full Text] [Related]
25. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: Arsenic immobilization associated with iron transformation. Fan J; Chen X; Xu Z; Xu X; Zhao L; Qiu H; Cao X J Hazard Mater; 2020 Nov; 398():122901. PubMed ID: 32470770 [TBL] [Abstract][Full Text] [Related]
26. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. Wang Q; Qian H; Yang Y; Zhang Z; Naman C; Xu X J Contam Hydrol; 2010 May; 114(1-4):35-42. PubMed ID: 20304518 [TBL] [Abstract][Full Text] [Related]
27. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934 [TBL] [Abstract][Full Text] [Related]
28. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Němeček J; Lhotský O; Cajthaml T Sci Total Environ; 2014 Jul; 485-486():739-747. PubMed ID: 24369106 [TBL] [Abstract][Full Text] [Related]
29. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation. Galdames A; Ruiz-Rubio L; Orueta M; Sánchez-Arzalluz M; Vilas-Vilela JL Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32796749 [TBL] [Abstract][Full Text] [Related]
30. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Dong H; Deng J; Xie Y; Zhang C; Jiang Z; Cheng Y; Hou K; Zeng G J Hazard Mater; 2017 Jun; 332():79-86. PubMed ID: 28285109 [TBL] [Abstract][Full Text] [Related]
31. Immobilization of Cr(VI) in Soil Using a Montmorillonite-Supported Carboxymethyl Cellulose-Stabilized Iron Sulfide Composite: Effectiveness and Biotoxicity Assessment. Zhang D; Xu Y; Li X; Liu Z; Wang L; Lu C; He X; Ma Y; Zou D Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32825647 [TBL] [Abstract][Full Text] [Related]
33. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Brasili E; Bavasso I; Petruccelli V; Vilardi G; Valletta A; Dal Bosco C; Gentili A; Pasqua G; Di Palma L Sci Rep; 2020 Feb; 10(1):1920. PubMed ID: 32024866 [TBL] [Abstract][Full Text] [Related]
34. Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium (Ⅵ) in aqueous solutions. Zhou H; Ye M; Zhao Y; Baig SA; Huang N; Ma M J Environ Sci (China); 2022 May; 115():227-239. PubMed ID: 34969450 [TBL] [Abstract][Full Text] [Related]
35. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: Synthesis, applications, and mechanisms. Lyu H; Tang J; Cui M; Gao B; Shen B Chemosphere; 2020 May; 246():125609. PubMed ID: 31911329 [TBL] [Abstract][Full Text] [Related]
36. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258 [TBL] [Abstract][Full Text] [Related]
37. Superior reduction and immobilization of Cr(VI) in soil utilizing sulfide nanoscale zero-valent iron supported by phosphoric acid-modified biochar: Efficiency and mechanism investigation. Li K; Xu W; Song H; Bi F; Li Y; Jiang Z; Tao Y; Qu J; Zhang Y Sci Total Environ; 2024 Jan; 907():168133. PubMed ID: 37890623 [TBL] [Abstract][Full Text] [Related]
38. Remediation on antimony-contaminated soil from mine area using zero-valent-iron doped biochar and their effect on the bioavailability of antimony. Ji J; Mu Y; Ma S; Xu S; Mu X Chemosphere; 2024 Sep; 363():143015. PubMed ID: 39103103 [TBL] [Abstract][Full Text] [Related]
39. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review. Xue W; Huang D; Zeng G; Wan J; Cheng M; Zhang C; Hu C; Li J Chemosphere; 2018 Nov; 210():1145-1156. PubMed ID: 30208540 [TBL] [Abstract][Full Text] [Related]
40. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]