These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 39003325)

  • 1. Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer.
    Liang R; Li F; Yao J; Tong F; Hua M; Liu J; Shi C; Sui L; Lu H
    Sci Rep; 2024 Jul; 14(1):16204. PubMed ID: 39003325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics.
    Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W
    J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI.
    Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y
    J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.
    Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H
    JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peritumoral edema enhances MRI-based deep learning radiomic model for axillary lymph node metastasis burden prediction in breast cancer.
    Luo H; Chen Z; Xu H; Ren J; Zhou P
    Sci Rep; 2024 Aug; 14(1):18900. PubMed ID: 39143315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomic features of axillary lymph nodes based on pharmacokinetic modeling DCE-MRI allow preoperative diagnosis of their metastatic status in breast cancer.
    Luo HB; Liu YY; Wang CH; Qing HM; Wang M; Zhang X; Chen XY; Xu GH; Zhou P; Ren J
    PLoS One; 2021; 16(3):e0247074. PubMed ID: 33647031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI for Predicting Lymphovascular Invasion in Invasive Breast Cancer.
    Zheng H; Jian L; Li L; Liu W; Chen W
    Acad Radiol; 2024 May; 31(5):1762-1772. PubMed ID: 38092588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.
    Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M
    J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer.
    Han L; Zhu Y; Liu Z; Yu T; He C; Jiang W; Kan Y; Dong D; Tian J; Luo Y
    Eur Radiol; 2019 Jul; 29(7):3820-3829. PubMed ID: 30701328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI.
    Liu C; Ding J; Spuhler K; Gao Y; Serrano Sosa M; Moriarty M; Hussain S; He X; Liang C; Huang C
    J Magn Reson Imaging; 2019 Jan; 49(1):131-140. PubMed ID: 30171822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI Radiomics of Breast Cancer: Machine Learning-Based Prediction of Lymphovascular Invasion Status.
    Kayadibi Y; Kocak B; Ucar N; Akan YN; Yildirim E; Bektas S
    Acad Radiol; 2022 Jan; 29 Suppl 1():S126-S134. PubMed ID: 34876340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI-Based Radiomics for Preoperative Prediction of Lymphovascular Invasion in Patients With Invasive Breast Cancer.
    Nijiati M; Aihaiti D; Huojia A; Abulizi A; Mutailifu S; Rouzi N; Dai G; Maimaiti P
    Front Oncol; 2022; 12():876624. PubMed ID: 35734595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphases DCE-MRI Radiomics Nomogram for Preoperative Prediction of Lymphovascular Invasion in Invasive Breast Cancer.
    Ma Q; Lu X; Chen Q; Gong H; Lei J
    Acad Radiol; 2024 Aug; ():. PubMed ID: 39107190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of breast cancer and axillary positive-node response to neoadjuvant chemotherapy based on multi-parametric magnetic resonance imaging radiomics models.
    Lin Y; Wang J; Li M; Zhou C; Hu Y; Wang M; Zhang X
    Breast; 2024 Aug; 76():103737. PubMed ID: 38696854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiating axillary lymph node metastasis in invasive breast cancer patients: A comparison of radiomic signatures from multiparametric breast MR sequences.
    Chai R; Ma H; Xu M; Arefan D; Cui X; Liu Y; Zhang L; Wu S; Xu K
    J Magn Reson Imaging; 2019 Oct; 50(4):1125-1132. PubMed ID: 30848041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI.
    Gao J; Zhong X; Li W; Li Q; Shao H; Wang Z; Dai Y; Ma H; Shi Y; Zhang H; Duan S; Zhang K; Yang P; Zhao F; Zhang H; Xie H; Mao N
    J Magn Reson Imaging; 2023 Jun; 57(6):1842-1853. PubMed ID: 36219519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer.
    Chen Y; Wang L; Dong X; Luo R; Ge Y; Liu H; Zhang Y; Wang D
    J Digit Imaging; 2023 Aug; 36(4):1323-1331. PubMed ID: 36973631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer.
    Li X; Yang L; Jiao X
    Acad Radiol; 2023 Jul; 30(7):1281-1287. PubMed ID: 36376154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lymph node metastasis prediction and biological pathway associations underlying DCE-MRI deep learning radiomics in invasive breast cancer.
    Liu W; Chen W; Xia J; Lu Z; Fu Y; Li Y; Tan Z
    BMC Med Imaging; 2024 Apr; 24(1):91. PubMed ID: 38627678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.