These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 39003499)
1. Arabidopsis WRKY1 promotes monocarpic senescence by integrative regulation of flowering, leaf senescence, and nitrogen remobilization. Zhang W; Tang S; Li X; Chen Y; Li J; Wang Y; Bian R; Jin Y; Zhu X; Zhang K Mol Plant; 2024 Aug; 17(8):1289-1306. PubMed ID: 39003499 [TBL] [Abstract][Full Text] [Related]
2. Moderate DNA methylation changes associated with nitrogen remobilization and leaf senescence in Arabidopsis. Vatov E; Zentgraf U; Ludewig U J Exp Bot; 2022 Aug; 73(14):4733-4752. PubMed ID: 35552412 [TBL] [Abstract][Full Text] [Related]
3. A Tripartite Amplification Loop Involving the Transcription Factor WRKY75, Salicylic Acid, and Reactive Oxygen Species Accelerates Leaf Senescence. Guo P; Li Z; Huang P; Li B; Fang S; Chu J; Guo H Plant Cell; 2017 Nov; 29(11):2854-2870. PubMed ID: 29061866 [TBL] [Abstract][Full Text] [Related]
4. AtVQ25 promotes salicylic acid-related leaf senescence by fine-tuning the self-repression of AtWRKY53. Tan Q; Zhao M; Gao J; Li K; Zhang M; Li Y; Liu Z; Song Y; Lu X; Zhu Z; Lin R; Yin P; Zhou C; Wang G J Integr Plant Biol; 2024 Jun; 66(6):1126-1147. PubMed ID: 38629459 [TBL] [Abstract][Full Text] [Related]
5. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Ellis CM; Nagpal P; Young JC; Hagen G; Guilfoyle TJ; Reed JW Development; 2005 Oct; 132(20):4563-74. PubMed ID: 16176952 [TBL] [Abstract][Full Text] [Related]
6. WRKY55 transcription factor positively regulates leaf senescence and the defense response by modulating the transcription of genes implicated in the biosynthesis of reactive oxygen species and salicylic acid in Wang Y; Cui X; Yang B; Xu S; Wei X; Zhao P; Niu F; Sun M; Wang C; Cheng H; Jiang YQ Development; 2020 Aug; 147(16):. PubMed ID: 32680933 [TBL] [Abstract][Full Text] [Related]
7. The MYB59 transcription factor negatively regulates salicylic acid- and jasmonic acid-mediated leaf senescence. He S; Zhi F; Min Y; Ma R; Ge A; Wang S; Wang J; Liu Z; Guo Y; Chen M Plant Physiol; 2023 May; 192(1):488-503. PubMed ID: 36542529 [TBL] [Abstract][Full Text] [Related]
8. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Besseau S; Li J; Palva ET J Exp Bot; 2012 Apr; 63(7):2667-79. PubMed ID: 22268143 [TBL] [Abstract][Full Text] [Related]
9. WRKY42 transcription factor positively regulates leaf senescence through modulating SA and ROS synthesis in Arabidopsis thaliana. Niu F; Cui X; Zhao P; Sun M; Yang B; Deyholos MK; Li Y; Zhao X; Jiang YQ Plant J; 2020 Sep; 104(1):171-184. PubMed ID: 32634860 [TBL] [Abstract][Full Text] [Related]
10. Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Sanagi M; Aoyama S; Kubo A; Lu Y; Sato Y; Ito S; Abe M; Mitsuda N; Ohme-Takagi M; Kiba T; Nakagami H; Rolland F; Yamaguchi J; Imaizumi T; Sato T Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33963081 [TBL] [Abstract][Full Text] [Related]
11. The NPR1-WRKY46-WRKY6 signaling cascade mediates probenazole/salicylic acid-elicited leaf senescence in Arabidopsis thaliana. Zhang D; Zhu Z; Gao J; Zhou X; Zhu S; Wang X; Wang X; Ren G; Kuai B J Integr Plant Biol; 2021 May; 63(5):924-936. PubMed ID: 33270345 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis. Segarra S; Mir R; Martínez C; León J Plant Cell Environ; 2010 Jan; 33(1):11-22. PubMed ID: 19781011 [TBL] [Abstract][Full Text] [Related]
13. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling. Zhang S; Li C; Wang R; Chen Y; Shu S; Huang R; Zhang D; Li J; Xiao S; Yao N; Yang C Plant Physiol; 2017 Apr; 173(4):2294-2307. PubMed ID: 28250067 [TBL] [Abstract][Full Text] [Related]
14. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF. Yang L; Ye C; Zhao Y; Cheng X; Wang Y; Jiang YQ; Yang B Planta; 2018 Jun; 247(6):1323-1338. PubMed ID: 29511814 [TBL] [Abstract][Full Text] [Related]
15. Huang R; Liu D; Huang M; Ma J; Li Z; Li M; Sui S Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731556 [TBL] [Abstract][Full Text] [Related]
16. WRKY1 Mediates Transcriptional Regulation of Light and Nitrogen Signaling Pathways. Heerah S; Katari M; Penjor R; Coruzzi G; Marshall-Colon A Plant Physiol; 2019 Nov; 181(3):1371-1388. PubMed ID: 31409699 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome analysis reveals major genes, transcription factors and biosynthetic pathways associated with leaf senescence in rice under different nitrogen application. Zhang Y; Wang N; He C; Gao Z; Chen G BMC Plant Biol; 2024 May; 24(1):419. PubMed ID: 38760728 [TBL] [Abstract][Full Text] [Related]
18. CLE14 functions as a "brake signal" to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. Zhang Z; Liu C; Li K; Li X; Xu M; Guo Y Mol Plant; 2022 Jan; 15(1):179-188. PubMed ID: 34530165 [TBL] [Abstract][Full Text] [Related]
19. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence. Jing Y; Yang Z; Yang Z; Bai W; Yang R; Zhang Y; Zhang K; Zhang Y; Sun J New Phytol; 2024 Jun; 242(6):2524-2540. PubMed ID: 38641854 [TBL] [Abstract][Full Text] [Related]
20. Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Kim YS; Sakuraba Y; Han SH; Yoo SC; Paek NC Plant Cell Physiol; 2013 Oct; 54(10):1660-72. PubMed ID: 23926065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]