These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39003745)

  • 1. Protocol to probe how promoters decode TF dynamics in Saccharomyces cerevisiae by combining optogenetic control with microscopy.
    Sweeney K; Luffey EL; McClean MN
    STAR Protoc; 2024 Sep; 5(3):103002. PubMed ID: 39003745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factor localization dynamics and DNA binding drive distinct promoter interpretations.
    Sweeney K; McClean MN
    Cell Rep; 2023 May; 42(5):112426. PubMed ID: 37087734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A; Lu XJ; Zakrzewska A; Klis FM; Bussemaker HJ
    PLoS One; 2008 Sep; 3(9):e3112. PubMed ID: 18769540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression.
    Hansen AS; O'Shea EK
    Mol Syst Biol; 2013 Nov; 9():704. PubMed ID: 24189399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and Characterization of Light-Responsive Transcriptional Systems.
    Gligorovski V; Rahi SJ
    Methods Mol Biol; 2024; 2844():261-275. PubMed ID: 39068346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic Control Reveals Differential Promoter Interpretation of Transcription Factor Nuclear Translocation Dynamics.
    Chen SY; Osimiri LC; Chevalier M; Bugaj LJ; Nguyen TH; Greenstein RA; Ng AH; Stewart-Ornstein J; Neves LT; El-Samad H
    Cell Syst; 2020 Oct; 11(4):336-353.e24. PubMed ID: 32898473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphical analysis and experimental evaluation of Saccharomyces cerevisiae PTRK1|2 and PBMH1|2 promoter region.
    Gerber S; Hasenbrink G; Hendriksen W; Van Heusden P; Ludwig J; Klipp E; Lichtenberg-Fraté H
    Genome Inform; 2010 Jan; 22():11-20. PubMed ID: 20238415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping functional transcription factor networks from gene expression data.
    Haynes BC; Maier EJ; Kramer MH; Wang PI; Brown H; Brent MR
    Genome Res; 2013 Aug; 23(8):1319-28. PubMed ID: 23636944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying combinatorial regulation of transcription factors and binding motifs.
    Kato M; Hata N; Banerjee N; Futcher B; Zhang MQ
    Genome Biol; 2004; 5(8):R56. PubMed ID: 15287978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive models of eukaryotic transcriptional regulation reveals changes in transcription factor roles and promoter usage between metabolic conditions.
    Holland P; Bergenholm D; Börlin CS; Liu G; Nielsen J
    Nucleic Acids Res; 2019 Jun; 47(10):4986-5000. PubMed ID: 30976803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirements for mammalian promoters to decode transcription factor dynamics.
    Antwi EB; Marrakchi Y; Çiçek Ö; Brox T; Di Ventura B
    Nucleic Acids Res; 2023 May; 51(9):4674-4690. PubMed ID: 37070176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation.
    Rullan M; Benzinger D; Schmidt GW; Milias-Argeitis A; Khammash M
    Mol Cell; 2018 May; 70(4):745-756.e6. PubMed ID: 29775585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal-dependent dynamics of transcription factor translocation controls gene expression.
    Hao N; O'Shea EK
    Nat Struct Mol Biol; 2011 Dec; 19(1):31-9. PubMed ID: 22179789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays.
    Levo M; Avnit-Sagi T; Lotan-Pompan M; Kalma Y; Weinberger A; Yakhini Z; Segal E
    Mol Cell; 2017 Feb; 65(4):604-617.e6. PubMed ID: 28212748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.
    Ozonov EA; van Nimwegen E
    PLoS Comput Biol; 2013; 9(8):e1003181. PubMed ID: 23990766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.
    Naseri G; Balazadeh S; Machens F; Kamranfar I; Messerschmidt K; Mueller-Roeber B
    ACS Synth Biol; 2017 Sep; 6(9):1742-1756. PubMed ID: 28531348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.