These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 39003903)
1. Perspectives on life cycle analysis of solar technologies with emphasis on production in India. Singh S; Dhar A; Powar S J Environ Manage; 2024 Aug; 366():121755. PubMed ID: 39003903 [TBL] [Abstract][Full Text] [Related]
2. Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method. Rashedi A; Khanam T Environ Sci Pollut Res Int; 2020 Aug; 27(23):29075-29090. PubMed ID: 32424748 [TBL] [Abstract][Full Text] [Related]
3. Environmental impacts of copper‑indium‑gallium-selenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition. Stamford L; Azapagic A Sci Total Environ; 2019 Oct; 688():1092-1101. PubMed ID: 31726540 [TBL] [Abstract][Full Text] [Related]
4. Life cycle assessment of photovoltaic electricity production by mono-crystalline solar systems: a case study in Canada. Alam E; Xu X Environ Sci Pollut Res Int; 2023 Feb; 30(10):27422-27440. PubMed ID: 36383321 [TBL] [Abstract][Full Text] [Related]
5. Towards sustainable photovoltaics: the search for new materials. Peter LM Philos Trans A Math Phys Eng Sci; 2011 May; 369(1942):1840-56. PubMed ID: 21464075 [TBL] [Abstract][Full Text] [Related]
6. Techno-economic and environmental sustainability analysis of filament-winding versus pultrusion based glass-fiber composite technologies. Rasheed R; Anwar I; Tahir F; Rizwan A; Javed H; Sharif F Environ Sci Pollut Res Int; 2023 Mar; 30(13):36276-36293. PubMed ID: 36543990 [TBL] [Abstract][Full Text] [Related]
7. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing. Zhang J; Gao X; Deng Y; Li B; Yuan C ChemSusChem; 2015 Nov; 8(22):3882-91. PubMed ID: 26489525 [TBL] [Abstract][Full Text] [Related]
8. Thin-film photovoltaic power generation offers decreasing greenhouse gas emissions and increasing environmental co-benefits in the long term. Bergesen JD; Heath GA; Gibon T; Suh S Environ Sci Technol; 2014 Aug; 48(16):9834-43. PubMed ID: 24984196 [TBL] [Abstract][Full Text] [Related]
9. Overview of the Current State of Flexible Solar Panels and Photovoltaic Materials. Dallaev R; Pisarenko T; Papež N; Holcman V Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687532 [TBL] [Abstract][Full Text] [Related]
10. Quantification of the Impact of Fine Particulate Matter on Solar Energy Resources and Energy Performance of Different Photovoltaic Technologies. Song Z; Wang M; Yang H ACS Environ Au; 2022 May; 2(3):275-286. PubMed ID: 37102140 [TBL] [Abstract][Full Text] [Related]
11. Assessing the competitiveness of Indian solar power industry using the extended Five Forces Model: a green innovation perspective. Batool K; Zhao ZY; Irfan M; Ullah S; Işik C Environ Sci Pollut Res Int; 2023 Jul; 30(34):82045-82067. PubMed ID: 37318728 [TBL] [Abstract][Full Text] [Related]
12. Life cycle cost analysis of solar energy via environmental externality monetization. Huang B; Wang Y; Huang Y; Xu X; Chen X; Duan L; Yu G; Li Z; Liu H; Kua HW; Xue B Sci Total Environ; 2023 Jan; 856(Pt 1):158910. PubMed ID: 36152852 [TBL] [Abstract][Full Text] [Related]
13. Emissions from photovoltaic life cycles. Fthenakis VM; Kim HC; Alsema E Environ Sci Technol; 2008 Mar; 42(6):2168-74. PubMed ID: 18409654 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporal analysis of the future carbon footprint of solar electricity in the United States by a dynamic life cycle assessment. Lu J; Tang J; Shan R; Li G; Rao P; Zhang N iScience; 2023 Mar; 26(3):106188. PubMed ID: 36879802 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of environmental impacts of cotton polo shirt production in Bangladesh using life cycle assessment. Islam S; Hasan AKMM; Bhuiyan MAR; Bhat G Sci Total Environ; 2024 May; 926():172097. PubMed ID: 38565355 [TBL] [Abstract][Full Text] [Related]
16. The levelized cost of electricity from perovskite photovoltaics. De Bastiani M; Larini V; Montecucco R; Grancini G Energy Environ Sci; 2023 Feb; 16(2):421-429. PubMed ID: 36818744 [TBL] [Abstract][Full Text] [Related]
17. Upgraded metallurgical grade silicon and polysilicon for solar electricity production: A comparative life cycle assessment. Méndez L; Forniés E; Garrain D; Pérez Vázquez A; Souto A; Vlasenko T Sci Total Environ; 2021 Oct; 789():147969. PubMed ID: 34082204 [TBL] [Abstract][Full Text] [Related]
18. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics. Eisenberg DA; Yu M; Lam CW; Ogunseitan OA; Schoenung JM J Hazard Mater; 2013 Sep; 260():534-42. PubMed ID: 23811631 [TBL] [Abstract][Full Text] [Related]
19. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels. Maani T; Celik I; Heben MJ; Ellingson RJ; Apul D Sci Total Environ; 2020 Sep; 735():138827. PubMed ID: 32464407 [TBL] [Abstract][Full Text] [Related]
20. Solar photovoltaic panel production in Mexico: A novel machine learning approach. López-Flores FJ; Ramírez-Márquez C; Rubio-Castro E; Ponce-Ortega JM Environ Res; 2024 Apr; 246():118047. PubMed ID: 38160972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]