These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39004373)

  • 1. Analytical model for the mitigation of VOC vapor with horizontal permeable reactive barrier in the contaminated site considering non-uniform source.
    Zhu ZW; Feng SJ; Zheng QT; Chen HX; Wei H
    Sci Total Environ; 2024 Oct; 948():174746. PubMed ID: 39004373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone.
    Verginelli I; Capobianco O; Hartog N; Baciocchi R
    J Contam Hydrol; 2017 Feb; 197():50-61. PubMed ID: 28109630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional analytical solution for VOC vapor migration through layered soil laterally away from the edge of contaminant source.
    Feng SJ; Zhu ZW; Chen HX; Chen ZL
    J Contam Hydrol; 2020 Aug; 233():103664. PubMed ID: 32569922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a horizontal permeable reactive barrier for preventing upward diffusion of volatile organic compounds through the unsaturated zone.
    Mahmoodlu MG; Hassanizadeh SM; Hartog N; Raoof A; van Genuchten MT
    J Environ Manage; 2015 Nov; 163():204-13. PubMed ID: 26321530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximate analytical model for transient transport and oxygen-limited biodegradation of vapor-phase petroleum hydrocarbon compound in soil.
    Zhu ZW; Feng SJ; Chen HX; Chen ZL; Ding XH; Peng CH
    Chemosphere; 2022 Aug; 300():134522. PubMed ID: 35395265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient migration behavior of VOC vapor in layered unsaturated soils subjected to multiple time-dependent point pollution sources: Analytical study.
    Ding XH; Feng SJ; Zheng QT; Peng CH; Zhu ZW; Yang CB
    Sci Total Environ; 2022 Feb; 806(Pt 1):150370. PubMed ID: 34562760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional analytical solution for subsurface volatile organic compounds vapor diffusion from a point source in layered unsaturated zone.
    Feng SJ; Zhu ZW; Chen HX; Chen ZL; Ding XH
    J Contam Hydrol; 2021 Dec; 243():103916. PubMed ID: 34768157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier.
    Mahmoodlu MG; Hassanizadeh SM; Hartog N; Raoof A
    J Contam Hydrol; 2014 Aug; 164():193-208. PubMed ID: 24992709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination.
    Yao Y; Mao F; Xiao Y; Luo J
    Water Res; 2019 Mar; 150():111-119. PubMed ID: 30508708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-dimensional analytical model of vapor intrusion involving vertical heterogeneity.
    Yao Y; Verginelli I; Suuberg EM
    Water Resour Res; 2017 May; 53(5):4499-4513. PubMed ID: 29081548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical Model for Volatile Organic Compound Transport in the Coupled Vadose Zone-Groundwater System.
    Huang J
    J Hydrol Eng; 2021 Jan; 26(1):1-14. PubMed ID: 33628002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the role of vadose zone breathing in vapor intrusion from contaminated groundwater.
    Man J; Wang G; Chen Q; Yao Y
    J Hazard Mater; 2021 Aug; 416():126272. PubMed ID: 34492998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analytical model of bubble-facilitated vapor intrusion.
    Ma E; Zhang YK; Liang X; Yang J; Zhao Y; Liu X
    Water Res; 2019 Nov; 165():114992. PubMed ID: 31446295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using vapor phase tomography to measure the spatial distribution of vapor concentrations and flux for vadose-zone VOC sources.
    Mainhagu J; Morrison C; Brusseau ML
    J Contam Hydrol; 2015; 177-178():54-63. PubMed ID: 25835545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a modular vapor intrusion model with variably saturated and non-isothermal vadose zone.
    Bekele DN; Naidu R; Chadalavada S
    Environ Geochem Health; 2018 Apr; 40(2):887-902. PubMed ID: 29022193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and natural attenuation of benzene vapor from a point source in the vadose zone.
    Sun Y; Yue G; Ma J
    Chemosphere; 2023 May; 323():138222. PubMed ID: 36863631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the source to building lateral separation distance in petroleum vapor intrusion.
    Verginelli I; Capobianco O; Baciocchi R
    J Contam Hydrol; 2016 Jun; 189():58-67. PubMed ID: 27116639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring spatial variability of vapor flux to characterize vadose-zone VOC sources: flow-cell experiments.
    Mainhagu J; Morrison C; Truex M; Oostrom M; Brusseau ML
    J Contam Hydrol; 2014 Oct; 167():32-43. PubMed ID: 25171394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the Role of Soil Texture in Vapor Intrusion from Groundwater Sources.
    Yao Y; Wang Y; Zhong Z; Tang M; Suuberg EM
    J Environ Qual; 2017 Jul; 46(4):776-784. PubMed ID: 28783798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the Vapor Intrusion Process for Non-Homogeneous Soils Using a Three-Dimensional Numerical Model.
    Bozkurt O; Pennell KG; Suuberg EM
    Ground Water Monit Remediat; 2009 Jan; 29(1):92-104. PubMed ID: 20664816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.