These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39004946)

  • 1. Transforming Red Phosphorus Photocatalysis: Dual Roles of Pre-Anchored Ru Single Atoms in Defect and Interface Engineering.
    Bian J; Zhang W; Ng YH; Hu Z; Wei Z; Liu Y; Deng J; Dai H; Jing L
    Angew Chem Int Ed Engl; 2024 Jul; ():e202409179. PubMed ID: 39004946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Promoted Ru
    Luo Z; Wang Z; Li J; Yang K; Zhou G
    Phys Chem Chem Phys; 2020 May; 22(20):11392-11399. PubMed ID: 32374318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition-Metal Single Atom Anchored on MoS
    Han X; Liu Q; Qian A; Ye L; Pu X; Liu J; Jia X; Wang R; Ju F; Sun H; Zhao J; Ling H
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26670-26681. PubMed ID: 37219848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetry-Broken Ru Nanoparticles with Parasitic Ru-Co Dual-Single Atoms Overcome the Volmer Step of Alkaline Hydrogen Oxidation.
    Mu XQ; Liu SL; Zhang MY; Zhuang ZC; Chen D; Liao YR; Zhao HY; Mu SC; Wang DS; Dai ZH
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202319618. PubMed ID: 38286759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing Hydrogen-Bonding Microenvironment in Close Proximity to Single-Atom Sites for Boosting Photocatalytic Hydrogen Production.
    Hu S; Gao ML; Huang J; Wang H; Wang Q; Yang W; Sun Z; Zheng X; Jiang HL
    J Am Chem Soc; 2024 Jul; 146(29):20391-20400. PubMed ID: 38987861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defects-Induced Single-Atom Anchoring on Metal-Organic Frameworks for High-Efficiency Photocatalytic Nitrogen Reduction.
    Ren G; Zhao J; Zhao Z; Li Z; Wang L; Zhang Z; Li C; Meng X
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202314408. PubMed ID: 37968240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-Interface Effect of Single-Atom Ru/CoO
    Gu W; Pei A; Zhang S; Jiang F; Jia Y; Qin Q; Du R; Li Z; Liu R; Qiu Y; Yan K; Zhao Y; Liang C; Chen G
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28036-28043. PubMed ID: 37253144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble Effect of Ruthenium Single-Atom and Nanoparticle Catalysts for Efficient Hydrogen Evolution in Neutral Media.
    Liu Y; Wu J; Zhang Y; Jin X; Li J; Xi X; Deng Y; Jiao S; Lei Z; Li X; Cao R
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36905349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergic Reaction Kinetics over Adjacent Ruthenium Sites for Superb Hydrogen Generation in Alkaline Media.
    He Q; Zhou Y; Shou H; Wang X; Zhang P; Xu W; Qiao S; Wu C; Liu H; Liu D; Chen S; Long R; Qi Z; Wu X; Song L
    Adv Mater; 2022 May; 34(20):e2110604. PubMed ID: 35319113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Single-Atom Tailoring with Bifunctional Integration for High-Performance CO
    Cheng L; Yue X; Wang L; Zhang D; Zhang P; Fan J; Xiang Q
    Adv Mater; 2021 Dec; 33(49):e2105135. PubMed ID: 34622513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Defects on Optical, Electronic, and Interface Properties of NiO/SnO
    Maarisetty D; Baral SS
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60002-60017. PubMed ID: 34894647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting photocatalytic hydrogen peroxide production by regulating electronic configuration of single Sb atoms via carbon vacancies in carbon nitrides.
    He Q; Ding J; Tsai HJ; Liu Y; Wei M; Zhang Q; Wei Z; Chen Z; Huang J; Hung SF; Yang H; Zhai Y
    J Colloid Interface Sci; 2023 Dec; 651():18-26. PubMed ID: 37536256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrofitting Zr-Oxo Nodes of UiO-66 by Ru Single Atoms to Boost Methane Hydroxylation with Nearly Total Selectivity.
    Fang G; Wei F; Lin J; Zhou Y; Sun L; Shang X; Lin S; Wang X
    J Am Chem Soc; 2023 Jun; 145(24):13169-13180. PubMed ID: 37279334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal anchored on red phosphorus to enable efficient photocatalytic H
    Lu L; Sun M; Wu T; Lu Q; Chen B; Chan CH; Wong HH; Huang B
    Front Chem; 2023; 11():1197010. PubMed ID: 37388947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergy of Single-Atom Ni
    Tang Y; Wei Y; Wang Z; Zhang S; Li Y; Nguyen L; Li Y; Zhou Y; Shen W; Tao FF; Hu P
    J Am Chem Soc; 2019 May; 141(18):7283-7293. PubMed ID: 31021087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive Coordination-Pairing between Ru Clusters and Single-Atoms for Efficient Hydrogen Evolution Reaction in Alkaline Seawater.
    Qian C; Shao W; Zhang X; Mu X; Gu X; Yu M; Ma L; Liu S; Mu S
    Small; 2022 Oct; 18(40):e2204155. PubMed ID: 36050884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile and Scalable Mechanochemical Synthesis of Defective MoS
    Lang C; Jiang W; Yang CJ; Zhong H; Chen P; Wu Q; Yan X; Dong CL; Lin Y; Ouyang L; Jia Y; Yao X
    Small; 2023 Aug; 19(32):e2300807. PubMed ID: 37086117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast interfacial charge evolution of the Type-II cadmium Sulfide/Molybdenum disulfide heterostructure for photocatalytic hydrogen production.
    Liu H; Tan P; Liu Y; Zhai H; Du W; Liu X; Pan J
    J Colloid Interface Sci; 2022 Aug; 619():246-256. PubMed ID: 35395539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Atom P-Co-Dy Charge-Transfer Bridge on Black Phosphorus for Enhanced Photocatalytic CO
    He M; Tian Z; Lin H; Wang G
    Small; 2024 Jul; ():e2404162. PubMed ID: 38958083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible-light photocatalysis and charge carrier dynamics of elemental crystalline red phosphorus.
    Jing L; Zhu R; Ng YH; Hu Z; Teoh WY; Phillips DL; Yu JC
    J Chem Phys; 2020 Jul; 153(2):024707. PubMed ID: 32668923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.