These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 39005189)
1. Tendon Decellularized Matrix Modified Fibrous Scaffolds with Porous and Crimped Microstructure for Tendon Regeneration. Zhao J; Zhang D; Lan Q; Zhong G; Liu Y; Holwell N; Wang X; Meng J; Yao J; Amsden BG; Yu Y; Chen F ACS Appl Bio Mater; 2024 Jul; 7(7):4747-4759. PubMed ID: 39005189 [TBL] [Abstract][Full Text] [Related]
2. Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L‑lactic acid) fibrous meshes. Wu S; Peng H; Li X; Streubel PN; Liu Y; Duan B Biofabrication; 2017 Nov; 9(4):044106. PubMed ID: 29134948 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Xu Y; Wu J; Wang H; Li H; Di N; Song L; Li S; Li D; Xiang Y; Liu W; Mo X; Zhou Q Tissue Eng Part C Methods; 2013 Dec; 19(12):925-36. PubMed ID: 23557537 [TBL] [Abstract][Full Text] [Related]
4. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells. Chen E; Yang L; Ye C; Zhang W; Ran J; Xue D; Wang Z; Pan Z; Hu Q Acta Biomater; 2018 Jun; 73():377-387. PubMed ID: 29678676 [TBL] [Abstract][Full Text] [Related]
5. An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Zhang C; Wang X; Zhang E; Yang L; Yuan H; Tu W; Zhang H; Yin Z; Shen W; Chen X; Zhang Y; Ouyang H Acta Biomater; 2018 Jan; 66():141-156. PubMed ID: 28963019 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372 [TBL] [Abstract][Full Text] [Related]
7. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Wu S; Wang Y; Streubel PN; Duan B Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251 [TBL] [Abstract][Full Text] [Related]
8. The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Yin Z; Chen X; Zhu T; Hu JJ; Song HX; Shen WL; Jiang LY; Heng BC; Ji JF; Ouyang HW Acta Biomater; 2013 Dec; 9(12):9317-29. PubMed ID: 23896565 [TBL] [Abstract][Full Text] [Related]
9. Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering. Olvera D; Schipani R; Sathy BN; Kelly DJ Biomed Mater; 2019 Apr; 14(3):035016. PubMed ID: 30844776 [TBL] [Abstract][Full Text] [Related]
10. [Advances of research on preparation of tendon tissue engineered scaffolds using electrospinning]. Tan J; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Jul; 26(7):865-8. PubMed ID: 22905627 [TBL] [Abstract][Full Text] [Related]
12. A dual-phase scaffold produced by rotary jet spinning and electrospinning for tendon tissue engineering. Guner MB; Dalgic AD; Tezcaner A; Yilanci S; Keskin D Biomed Mater; 2020 Oct; 15(6):065014. PubMed ID: 32438362 [TBL] [Abstract][Full Text] [Related]
13. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration. Junka R; Yu X Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110981. PubMed ID: 32487395 [TBL] [Abstract][Full Text] [Related]
14. Integration of mesenchymal stem cell sheet and bFGF-loaded fibrin gel in knitted PLGA scaffolds favorable for tendon repair. Zhao T; Qi Y; Xiao S; Ran J; Wang J; Ghamor-Amegavi EP; Zhou X; Li H; He T; Gou Z; Chen Q; Xu K J Mater Chem B; 2019 Apr; 7(13):2201-2211. PubMed ID: 32073579 [TBL] [Abstract][Full Text] [Related]
15. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells. Ko E; Alberti K; Lee JS; Yang K; Jin Y; Shin J; Yang HS; Xu Q; Cho SW ACS Appl Mater Interfaces; 2016 Sep; 8(35):22819-29. PubMed ID: 27502160 [TBL] [Abstract][Full Text] [Related]
16. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering. Vuornos K; Björninen M; Talvitie E; Paakinaho K; Kellomäki M; Huhtala H; Miettinen S; Seppänen-Kaijansinkko R; Haimi S Tissue Eng Part A; 2016 Mar; 22(5-6):513-23. PubMed ID: 26919401 [TBL] [Abstract][Full Text] [Related]
17. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling. Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783 [TBL] [Abstract][Full Text] [Related]
18. 3D Mimicry of Native-Tissue-Fiber Architecture Guides Tendon-Derived Cells and Adipose Stem Cells into Artificial Tendon Constructs. Laranjeira M; Domingues RMA; Costa-Almeida R; Reis RL; Gomes ME Small; 2017 Aug; 13(31):. PubMed ID: 28631375 [TBL] [Abstract][Full Text] [Related]
20. Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering. Wu S; Liu J; Qi Y; Cai J; Zhao J; Duan B; Chen S Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112181. PubMed ID: 34082981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]