These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 39005320)

  • 1. Biomolecular condensates are characterized by interphase electric potentials.
    Posey AE; Bremer A; Erkamp NA; Pant A; Knowles TPJ; Dai Y; Mittag T; Pappu RV
    bioRxiv; 2024 Jul; ():. PubMed ID: 39005320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single fluorogen imaging reveals distinct environmental and structural features of biomolecular condensates.
    Wu T; King MR; Farag M; Pappu RV; Lew MD
    bioRxiv; 2023 Dec; ():. PubMed ID: 36747818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion binding with charge inversion combined with screening modulates DEAD box helicase phase transitions.
    Crabtree MD; Holland J; Pillai AS; Kompella PS; Babl L; Turner NN; Eaton JT; Hochberg GKA; Aarts DGAL; Redfield C; Baldwin AJ; Nott TJ
    Cell Rep; 2023 Nov; 42(11):113375. PubMed ID: 37980572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FIREBALL: A tool to fit protein phase diagrams based on mean-field theories for polymer solutions.
    Farag M; Holehouse AS; Zeng X; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoscale structure-function relationships in mitochondrial transcriptional condensates.
    Feric M; Sarfallah A; Dar F; Temiakov D; Pappu RV; Misteli T
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2207303119. PubMed ID: 36191226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
    Zheng W; Dignon GL; Jovic N; Xu X; Regy RM; Fawzi NL; Kim YC; Best RB; Mittal J
    J Phys Chem B; 2020 Dec; 124(51):11671-11679. PubMed ID: 33302617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric Potential at the Interface of Membraneless Organelles Gauged by Graphene.
    Hoffmann C; Murastov G; Tromm JV; Moog JB; Aslam MA; Matkovic A; Milovanovic D
    Nano Lett; 2023 Dec; 23(23):10796-10801. PubMed ID: 37862690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics.
    Yeong V; Werth EG; Brown LM; Obermeyer AC
    ACS Cent Sci; 2020 Dec; 6(12):2301-2310. PubMed ID: 33376791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological condensates form percolated networks with molecular motion properties distinctly different from dilute solutions.
    Shen Z; Jia B; Xu Y; Wessén J; Pal T; Chan HS; Du S; Zhang M
    Elife; 2023 Jun; 12():. PubMed ID: 37261897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic Effect on the Microenvironment of Biomolecular Condensates.
    Zhu L; Pan Y; Hua Z; Liu Y; Zhang X
    J Am Chem Soc; 2024 May; 146(20):14307-14317. PubMed ID: 38722189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The liquid-to-solid transition of FUS is promoted by the condensate surface.
    Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase separation in biology and disease-a symposium report.
    Cable J; Brangwynne C; Seydoux G; Cowburn D; Pappu RV; Castañeda CA; Berchowitz LE; Chen Z; Jonikas M; Dernburg A; Mittag T; Fawzi NL
    Ann N Y Acad Sci; 2019 Sep; 1452(1):3-11. PubMed ID: 31199001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates.
    Ma W; Zhen G; Xie W; Mayr C
    Elife; 2021 Mar; 10():. PubMed ID: 33650968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface of biomolecular condensates modulates redox reactions.
    Dai Y; Chamberlayne CF; Messina MS; Chang CJ; Zare RN; You L; Chilkoti A
    Chem; 2023 Jun; 9(6):1594-1609. PubMed ID: 37546704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations.
    Farag M; Cohen SR; Borcherds WM; Bremer A; Mittag T; Pappu RV
    Nat Commun; 2022 Dec; 13(1):7722. PubMed ID: 36513655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling compartmentalization by non-membrane-bound organelles.
    Wheeler RJ; Hyman AA
    Philos Trans R Soc Lond B Biol Sci; 2018 May; 373(1747):. PubMed ID: 29632271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies.
    Kaur T; Raju M; Alshareedah I; Davis RB; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Feb; 12(1):872. PubMed ID: 33558506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.