These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39005917)
1. Prediction of TBM penetration rate for different surrounding rocks and cutter head diameters. Yalei Y; Lijie D; Rong T; Fei W; Huilan Z Heliyon; 2024 Jun; 10(12):e33174. PubMed ID: 39005917 [TBL] [Abstract][Full Text] [Related]
2. Vibration prediction and analysis of the main beam of the TBM based on a multiple linear regression model. Yang Y; Du L; Li Q; Zhao X; Ni Z Sci Rep; 2024 Feb; 14(1):3498. PubMed ID: 38347034 [TBL] [Abstract][Full Text] [Related]
3. On-site measurement and environmental impact of vibration caused by construction of double-shield TBM tunnel in urban subway. Wang Z; Jiang Y; Shao X; Liu C Sci Rep; 2023 Oct; 13(1):17689. PubMed ID: 37848602 [TBL] [Abstract][Full Text] [Related]
4. Multi-step real-time prediction of hard-rock TBM penetration rate combining temporal convolutional network and squeeze-and-excitation block. Li L; Liu Z; Fang X; Qi W Sci Rep; 2024 Jun; 14(1):14326. PubMed ID: 38906959 [TBL] [Abstract][Full Text] [Related]
5. Case study on the influence of rock brittleness on the TBM tunnelling performance. Li Q; Du L; Yang Y; Liu L; Zhao X; Xu G Sci Rep; 2024 Oct; 14(1):23163. PubMed ID: 39369088 [TBL] [Abstract][Full Text] [Related]
6. Rock fragmentation indexes reflecting rock mass quality based on real-time data of TBM tunnelling. Li X; Wu LJ; Wang YJ; Li JH Sci Rep; 2023 Jun; 13(1):10420. PubMed ID: 37369655 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive study on the Python-based regression machine learning models for prediction of uniaxial compressive strength using multiple parameters in Charnockite rocks. Kochukrishnan S; Krishnamurthy P; D Y; Kaliappan N Sci Rep; 2024 Mar; 14(1):7360. PubMed ID: 38548837 [TBL] [Abstract][Full Text] [Related]
8. Determination of Drilling Rate Index Based on Rock Strength Using Regression Analysis. Yenice H An Acad Bras Cienc; 2019; 91(3):e20181095. PubMed ID: 31618413 [TBL] [Abstract][Full Text] [Related]
9. K-means-based heterogeneous tunneling data analysis method for evaluating rock mass parameters along a TBM tunnel. Wang R; Zhang L Sci Rep; 2023 Dec; 13(1):21564. PubMed ID: 38057557 [TBL] [Abstract][Full Text] [Related]
10. SSFLNet: A Novel Fault Diagnosis Method for Double Shield TBM Tool System. Zhou P; Liu C; Xu J; Ma D; Wang Z; He E Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676248 [TBL] [Abstract][Full Text] [Related]
11. Method for real-time prediction of cutter wear during shield tunnelling: A new wear rate index and MCNN-GRU. Zhang N; Zhao LS MethodsX; 2023; 10():102017. PubMed ID: 36713303 [TBL] [Abstract][Full Text] [Related]
12. Soft ground micro TBM jack speed and torque prediction using machine learning models through operator data and micro TBM-log data synchronization. Kilic K; Narihiro O; Ikeda H; Adachi T; Kawamura Y Sci Rep; 2024 Apr; 14(1):9728. PubMed ID: 38678078 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Geological Parameters during Tunneling by Time Series Analysis on In Situ Data. Liu S; Yang K; Cai J; Zhou S; Zhang Q Comput Intell Neurosci; 2021; 2021():3904273. PubMed ID: 34671389 [TBL] [Abstract][Full Text] [Related]
14. Construction practice of water conveyance tunnel among complex geotechnical conditions: a case study. Duan K; Zhang G; Sun H Sci Rep; 2023 Sep; 13(1):15037. PubMed ID: 37699948 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the specific energies of sinusoidal VCS cutter rings and CCS cutter rings in breaking rock-like materials based on the FEM. Zhao JL; Zhu XY; Zhang H; Xu HL; Yang S; Wu P; You XM Sci Rep; 2024 Apr; 14(1):8142. PubMed ID: 38584177 [TBL] [Abstract][Full Text] [Related]
16. Data in intelligent approach for estimation of disc cutter life using hybrid metaheuristic algorithm. Elbaz K; Shen SL; Zhou A; Yin ZY; Lyu HM Data Brief; 2020 Dec; 33():106479. PubMed ID: 33241094 [TBL] [Abstract][Full Text] [Related]
17. Experimental and numerical investigation of the TBM disc cutter wear using a new tunnel boring machine laboratory simulator. Chakeri H; Darbor M; Shakeri H; Mousapour H; Mohajeri V Heliyon; 2024 Sep; 10(17):e37148. PubMed ID: 39286142 [TBL] [Abstract][Full Text] [Related]
18. Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks. Hassan MY; Arman H Sci Rep; 2022 Dec; 12(1):20969. PubMed ID: 36470991 [TBL] [Abstract][Full Text] [Related]
19. Non-destructive test-based assessment of uniaxial compressive strength and elasticity modulus of intact carbonate rocks using stacking ensemble models. Fereidooni D; Karimi Z; Ghasemi F PLoS One; 2024; 19(6):e0302944. PubMed ID: 38857272 [TBL] [Abstract][Full Text] [Related]
20. A New Strategy for Disc Cutter Wear Status Perception Using Vibration Detection and Machine Learning. Pu X; Jia L; Shang K; Chen L; Yang T; Chen L; Gao L; Qian L Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]